
NASA Techn,cal Memorandum 88288

Manual for GetData Version 3.1

A FORTRAN Utility Program for Time History Data

Richard E. Maine

(NASA-TR-88288) _ANIIAL FOR C,ETDkTA VERSION

3.1: A FOBTS&N UTILITT PROGRAM FOR TIBE

HISTORT DATA {N_.SA) lq6 p Avail: NTiS HC

_ 07/MF A01 CSCL 098

G3/61

N88-10520

Unclas
0103641

C,:toDer 1987

¢

Nat,onal Aeronauhcs and

Spac_ Adm=n,strahon

NASATechnicalMemorandum88288

Manual for GetData Version 3.1

A FORTRAN Utility Program for Time History Data

Richard E Maine

Ames Research Center, Dryden Flight Research Facility, Edwards, California

1987

National AP _auhcs and

Space Adm_mstration

Ames Relearch Center

Dryden Flight Research Facility
Edwards, California 93523-5000

Contents

SUMMARY

1 Introduction 1

2 User's Guide to GetData

2.1 Running GetData ..

2.2 Euterip.g GetData Commands

2.3 Help Command ... 1

2.4 Basic Operation ... -,

2.5 Controlling the Output Frame Times 7

2.6 Merging and Splicing Input Files !_

2.7 Applying Time Skews 11

2.S Interpolating in Time l:/

2.9 Selecting and Defining Signals 11

2.10 Showing Signal Definitions 17

2.1 1 :x,u _omating ('ommand Sequences 17

2.12 Running System ('ommandsFrom GetData l!t

2.13 _;pecifying File Formats 1!_

3 21

('alculal,'d Function Modules :21

Filler Module .. 22

File Interface Modules

l'il,' l.'ormat s "

System Dependencies "27

Specific ('onversions :_1

3.(i.1 VAX VMS ('onversion :ll

3.5.2 I'NIX ('onversion :_2

Appendix A--ltelp Files 34

A.I i'r_)_ram lh'lp I"il,, :_1

A.2 ('()mman,I limp Files :¢(;

.\ .2.1 ('op?/ ('_)nlmand :_,
A/2.2

.\ .2.3

:\ .2.1

..\.;25

A 2(_

A/2.7

:\ .2._

.\/2.!i

A .;2. : 0

:\.'2.1 I

.4.3 "l,)pi(

A .:l. I

..\ .:_.'2

.\ .:1.3

]).0 { '(}nllniIlld :{x

I1_ Ip ('()llllllalld 11)

3h tt.M ('_)mmand 11

Quit t'()mmatld Ii_

Ib.d ('()mmaI_d II

,_'/iolr ('()llllllalld II;

._'l(]liOl, _, ('()llllllii lid IT

.b'/w w ('()l,llnand ",1

,S'y._('_mlnland ",:t

II'rttr ('Ollllll;llld "_ I

limp l"il,'s ... ",l,

('alculali(nls ",l;

(']'l:Timc . .. ",!1

I'ilelnleri.'aco I,A

iii

I d

A.3.4 Version
• " • • • ° • • • ° • ° • • • • • ° ° " • • • • • • " • • 66

A.4 Calculated Function Subroutine Help Files 70
A•4.1 Subroutine AllocateCFz

• " " ° • • • • • • ° • • • • * • • • 70

A.4.2 Subroutine ActivateCFz
• • • ° • • • • • • • • ° • • ° • 73

A.4.3 Subroutine DoCF_
• • " • • • • ° • • ° • • • • ° " " • 76

A.5 Filter Subroutine Help Files 79
A.5.i Subroutine AllocateFilt

..... ° " " " " • " " " " 79

A.5.2 Subroutine ActioateFilt

A.5.3 Subroutine ReMapFilt 81
A.5A Subroutine DoFilt 83

.............................. 85
A.6 File Read Subroutine Help Files _7

A.6.1 Function OpenR _7

A.6.2 Subroutine RSigs 89

A.6.3 Subroutine SigsR 91
A.6.4 Subroutine ChansR

.................................. 93
A.6.5 Subroutine RewR

............... • 95

A.6.6 Function FSeek

A.6.7 Function FRead
...................... 99

A.6.8 Subroutine Closer
................................... 101

A.7 File Write Subroutine Help Files

A.7.1 Function OpenW 103103
A.7.2 Subroutine FWrite 106
A.7.3 Subroutine CloseW

.................................. 10,_
A.8 File Format Help Files

..................................... 110
A.8.1 ASCII 1 Format

.................................... ll0
A.8.2 Compressed 2 Format

A.8.3 List 1 Format 115
...................................... llS

A.8.4 Uncompressed 1 Format 119
A.8.5 Uncompressed 2 Format

................................ 121

Appendix B--Sample Calculation Routines 123
B.1 Sample Calculated Function Module

............................. 1:23
B.I.1 Subroutine A!locateCFl

................................ 123
B.1.2 Subroutine ActivateCFl

................................ 12.")
B.1.3 Subroutine DoCFI

................................... 126
B.2 Sample Filter Module

..................................... 127
B.2.1 Subroutine AllocateFilt.

................................ 127
II.2.2 Subroutine ActivateFilt

II.2.3 Subrouline ReMapFilt 130
................................. 131

B.2.4 Subroutine DoFilt
................................... 132

II.2.5 Subroutine Low3F
................................... 13.1

B.2.6 Subroutine NotchF
................................... 137

References

Index to User's and Programmer's Guides

139

140

iv

"' ! ° II..d

SUMMARY

This report documents version 3.1 of the GetData computer program. GetData is a utility progranl

for manipulating files of time history data, that is, data giving the values of parameters as functions

of time. The most fundamental capability of GetData is extracting selected signals and time segnwnts

from all input file and writing the selected data to an output file. Other capabilities include cow,vetting

file formats, merging data from several input files, time skewing, interpolating to corn moll oU t pn t times.

and generating calculated output signals as functions of the input signals.

This report also documents the interface standards for the subroutines used by GetDat, to wad

and write the time history files. All interface to the data files is through these subroutines, keepi_ag !he

main body of GetData independent of the precise details of the file formats. Different file l'ormals ,'al_

be supported by changes restricted to these subroutines. Other computer programs conformit_ _o lhe

interface standards can call the same subroutines to read and write files in compatible formats.

1 Introduction

Aircraft flight test and research projects often generate large amounts of computer data. A si)lgle fli_hl

of a complex vehicle typically generates several hundred megabytes of data. A single flight proje(t may

involve several hundred flights, and a dozen active flight projects may be in progress at a major tligh't

test or research site. This gives a total volume on the order of a terabyte of data to be managed.

lh(' overwhelming majority of these data can be classified as time history data, thal i>. (I;_ta

>hewing the values of various parameters (signals) as functions of time. The t)aralneter x';tlues are

usually sampled and recorded at regular time intervals. Different parameters on the same vehicle

can have different sample rates, typically ranging between 1 and i000 samples/sec. In _om(, cases,

parameters are sampled at irregular time intervals; such asynchronous sampling is relativeh' r,_w (but
_),)t unheard of) in current data systems.

J'he (htData program is a utility for performing several functions fundamental to til(,_ c,t" lime

history data. The most fundamental capability of Getl)ata is extracting selected signals _ml time

segments from an input file and writing the selected data to an output file. Other cal)abilitie_ ilwlu(h,

coaverting file formats, merging data from several input files, time .,:kewing, interpolating to c()mmolk

output times, and generating calculated output signals as functions of the input sigtlals.

l'imo history data are used, manipulated, and exchanged among dozens of comput_,r pr(,_i'am_.

['ntil recently each program was typica.lly writte,l to use a specific tilt, fi)rmat for time hist(_rv d_lt_l.
]h,,r_, was only minimal coordination of these file formats.

"|his proliferation of incompatible file formats necessitated nun_erous pit,gram I)al(.l,es t,_ I,';_d ,_ll_i

write different formats; conversion programs were also written to transla, te file fOl'llla|s. ,,_],_ h()ll_,h Oil(']l

patctj or conversion program required relatively little effort, the large number of them alld the];_r_,,
volunw _)f data involved meant that the total effort exlwnded was substantial.

All obvious approach to dealing with this problem is to minimize the number of il_c_,l_p;,til,h,

fl)rll|afs used, adopting a small r.umber of formats as supported standards at a site. This ;_ppr_.;_ch c;_ll

substantially reduce, but cannel eliminate, lhe problen_. The vohlnle of existing tiles is t_o I;_v_,, f,,r il

I_ b_, practical to reforma_ them all. We do l_ot always have the option It) specify the tilt, fi,rlt_:_Is us,,,I
bv commercial programs or receiw,d from other sites.

The ¢;rtl),la program addresse:; this problem by modularizalion. All code th;_t is _l_,l_,l_,l,,_l _

Sl,,'cific fil,, I't_rlnals is colb,cted into a fi,w small subrt'mtines. We have adopted a standard _l_,citic;_l;,,l_

for the interface between these file access subroutines and the rest of the program. This allows the

same subroutines to be used in any program conforming to the interface standard. Support of a new

file format then requires only that a single version of the access routines be written for that forniat.

This requires relinking each pertinent program with the new access routines but requires no source
code changes outside the access routines.

We have recommended that most programs adopt the interface standards of the file access routines.

This is not practical in MI cases, notably for those programs where source code is not distributed

or where the file interface is too intricate for easy conversion. In such cases, GetData can be used

to convert data betweeu formats used by different programs. The access routines for reading files are

completely independent of the access routines for writing files, so format conversion can be acc. mplished
by running GetData with read routines for one format and write routines for another.

This document is a manual for the GetData program, version 3.1. The document also includes

specification of the interface standards for the file access routines and documentation of a si)ecitic set
of access routines supporting several generally useful formats.

2 User's Guide to GetData

This section describes how to use the GetData program. Most of the description applies to any

installation of GetData, but a few of the "niceties" are system dependent and may not be implemented

in all installations. All such system-dependent features are mentioned in the text and are referenced

tinder "system dependence" in the index• The manual will describe the system-dependent features as

they are implemented on the ELXSI computer (ELXSI, San Jose, California, ref. 1).

The manual documents all limitations that arise from fixed array dimensions in the code (refer-

enced under "limitations" in the index). All array limits were chosen liberally to accommodate most

applications. The limits can be changed easily, in most cases by changing a single parameter statementin the code.

GetData is designed to be highly crash resistant. When it encounters an error, it tei'lilillates

the failed command, prints an error message, and prompts for the next command• Such Ullilidane

.rrors as exceeding dimension limits or giving names of nonexistent files or signals are all detected.

The only known internal program crashes involve data values too large for single-precision float int_-point variables.

t

!t

2.1 Running GetData

(;ttl)ata is designed as an interactive program, that is, it reads commands from the user's terlllilla].

The method of starting an interactive job is system dependent• On the ELXSI, you type

GetData

'l'h,, pr(,14ral n will then disl)lay soniethiug like

getData program

time history data selection

Richard Maine - NASA Dryden

version 3.1.1 11 Sept 86

2

i#

this run date: 21-0ct-86 time: 14:59:55

Help is available

getData:

The run date and time will be different, as might version number and date. The getData: i)r(,JHl)t
indicates that GetData is waiting for a command.

Some GetData runs can be slow or might need to wait for events such as tape mounting;. The

program can be run in a batch mode if desired. To run GetData in a batch mode, use an (,dil_c t,)

prepare an input file containing all the GetData commands you would type to do the run interactivclx.

Then specify this file as the system input file when you batch the GctData program. The melh()(is

of running a batch job and specifying its system input file are system dependent. On the ELXSI. the

command to batch the GetData program with an input file called commandFile would be

batch 'commandFile> GetData'

All output that would have gone to the terminal in an interactive job will go to a svstem-del)(._(le_tl
batch log file in a batch job.

The remainder of this manual is written as though GetData were being run interactivelv. It is

implicit that the discussion also applies to batch runs if the references to the terminal are approl)ri;_Telv
interpreted as applying to the system input file or batch log file.

2.2 Entering Ge'_Data Commands

\Vhenever you see the getData: prompt, the program is waiting for a command. This _ection (le.-('rii)e._

eneral principles of command entry that apply to all GetData comn,ands. Tim f,llowin_z ._c(li(,rl._
describe the details of specific commands.

Input lines are limited to 256 characters including trailing blanks: some systems may ehl,,r(e
smaller limits.

If the last nonblank character in any line is an ampersand (a), it indicates that the ('omm_ml _ill I,(,

continued on the following input line. GetData will prompt with more: for you to enler the ('onl in_l i()l,

line. ('.ontinuation lines can be further continued, subject only to a limit of ,1096 chara(-le:_ lit lhe

concatenated command. Trailing blanks on the input fines are removed before concatenaling lhe lit,es

a_(l therefore do not count towards this limit. The ampersand continuation characters areconv,,rle_l

t(> blanks in the concatenated command; therefore, line breaks must occur at places where hla_hk._

are allowed. Concatenation of continuation lines occurs before any other processing of a c<>mmz_ml.

Therefore. errors in a command will not be diagnosed until after the last line of the command, ev,,jm it
the error occurred on the first line.

If the first two characters of a command (except for possible leading blanks) are dashes (--). llL;_t

command i_ considered to be a comment and is ignored. A completely I)lank command is _ls,_ _ll,,x_,,_[

;_s _ con_ment. ('omments are most useful in do files (section 2.11) and I)atch jol) inputs I)ul _i_, ,_1_,,

_dlowed interactiw,ly. Note that commentscaa have continuation lines, jusl like all other<'(_m_,_l_(l_.

N,)ncomment commands are divided into fields separated by various delimiter char;_cler.s. I'll,, _,_I

<'_mm,_n delimiters are blanks, commas, and equal signs. The discussions (,f the specific ('(,u:ma_([_ will

3

4

generally tell what delimiters axe expected between the various fields of the commands. Whenever the

discussion does not explicitly state otherwise, a blank delimiter is expected.

GetData ignores any superfluous blanks between input fields, around delimiters, and at the begin-

ning and end of commands. You can freely use such blanks. Blanks are not allowed within input helds,

except for a few special cases where quoted fields with embedded blanks are allowed.

The first blank-delimited field in any noncomment command specifies what command is being

invoked. The remaining fields are arguments to the command. The arguments are described in the

sections about the specific commands. Many of the commands and arguments can be specified using

abbreviations and synonyms.

There are three 3yntactic classes of arguments: positional, keyword, and switch. The command

read myFile fSke_=.02 +interpolate

illustrates all three classes. A positional argument simply consists of a value; the order of the positional

arguments implicitly defines which arguments go with which parameters. The myFile in tile above

example is a positional argument; the program knows by its position as the first argument that this is

a file name. A keyword argument consists of an argument name or keyword, followed by an equal sign

delimiter, followed by a value. The fSkew=.02 in the example is a keyword argument. The value is

assigned to the parameter identified by the keyword. A switch argument consists of an argument name

preceded by a + or - sign. Switch arguments assign the boolean values true or false to their para'neters,

with a + giving the value true and a - givihg the value -false. Switch parameters may have antonyms;

setting the value of an antonym is equivalent to setting the original switch to the opposite value.

All GetData input is case insensitive on machines supporting upper- and lowercase. The commands

can be entered in any mix of upper- and lowercase.

2.3 Help Command

The help command provides access to an online help facihty. The current implementation is highly

system dependent; it directly uses the ELXSI help facility. The help command may not be ava:,lable

it, all implementations of GetData and may function differently in some implementations.

The I)a_ic function of the help command is to list a help file one screen at a time. To display a help

tile interactively, type help followed by the name of the help file as a positional argument. For instance,

help help

will display the help file for the help command itself. Typing help with no argument is equivalent I¢,

typing help help.

GetData has help files on commands, subroutines, and topics. To obtain a list of all the available

h,'lp files, type one of

help commands

help subroutines

help topics

I h,, resp,_nses should look something like

D

4

getData: help commands

Searching the index ...

copy [cmd] -- copy data from input to output file

method [cmd] -- define interpolation methods

read [cmd] -- specify input data file(s)

show/list [cmd] -- list signal names

signals [cmd] -- define signals to be written

skew [cmd] -- define input signal skews

write [cmd] -- specify output data file name

do [cmd] -- execute a command file

help [cmd] -- help command

quit [cmd] -- exit the program normally

sys [cmd] -- execute a system command without exiting program

getData: help subroutines

Searching the index ...

activateCF [sub] -- activate needed calculated functions

activateFilt [sub] -- activate needed filters

al]ocateCF [sub] -- locate signals for calculated functions

allocateFilt [sub] -- locate signals for filter

doCF [sub] -- evaluat_ calculated functions

doFilt [sub] -- evaluate filters

reMapFilt [sub] -- reMap filters to compressed locations

calculations [topic] -- calculated functions in getData

getData: help topics

Searching the index ...

calculations [topic] -- calculated functions in getData

cpuTime [topic] -- cpu time estimates for getData on ELXSI

version [topic] -- version 3.1 changes to getData

.\ppendix 3.6.2 coT_tains listing,_ of o!! '% hel F files in GetData.

Some <h,tails of the supplied help files are specific to the installation of the program at NASA .\,_,,,_

I¢_'soarch ('('ntcr, Dryd<,n Flight Research Facility (Ames-Dryden). For ins/ant(,, there are r_'f,.1,,t,,,,,
1,_ th,, installation of the program under a specific user name.

'l'h(, FI, XSI he//, command has several other features, such as kewvor(I s('arch(,s. ;_s (I,'_(lil.*,l it,

,'f,,r,nc(, 1. Those foalures do work in (;etl)ata, but /h(,y are more us_'ful wh(,n lht,r, at,, h,_r,,Ir,,,I

t I,()|ls;|||(ls of help fih's lhan when there are only a han(lfi_l; therefor(,, this (l(wum(,m will ll(,l _ix',, (I,.t ,,il-.

2.4 Basic Operation

l'his st'clion describes the simplest GctData runs. It shows how to copy s('le('te(I signals and til_.*. IE,,t,_

;,lJ input ill(, to an outpu! fih'. All other (;rtDattt runs ;ire built on this basic slr,wt,jr,,.

Once lh(, program is started, th,re are tire steps re(i,ired in any.(,'rtData ruu. '['h_,s,, :_t,,l_ ,,.,, It,,.

r, nd.._igttal._." write., copy, and q,it ('(,nlmands, as in the fi,lh,witiK ('xamph, (',mlruz, n(I _,'q,J-/t,,.:

\

read someFile

signals alpha, beta, p. q, r

write myFile

copy rime - 10:0:0:0 - 11:0:0:0

quit

Some jobs may involve additional steps, but these five are _lways included.

The read command specifies the name of the input time history file. In this example, the input

file is named someFile. In response to the read commmad, the program opens the specified file and

determines what signMs are available. The read command opens and prepares the file for subsequet_t

data transfer, but does not immediately read any data from the file.

The signals command specifies what signals are to be written on the output file. In this example, the

signals are selected by name. The signal names can be delimited by blanks or commas. An alternative

tbrm of tile signals command is

signals ÷ali

whieh selects all the signals currently available. The natural placement of the signals command is aftt'r

the read command, which defines the list of available signals.

The write command specifies the name of the output time history fi!e. In this example commall(l

sequence, the output file is named myFile. In response to the write command, the program opens a

tile with the specified name and defines the names of the signals on the file. The signal names must

have been defined prior to the write command and should not be subsequently changed. The _l'rit(

command opens and prepares the file for subsequent data transfer, but does not immediately write any
data to the file.

The copy command copies data from the input time history file to the output time history file. Th(,

input and output files must have previously been opened using the read and write commands. The

co1,1 command causes the actual data transfer to occur.

The copy command also specifies the time segments to be copied. The time argument gives the

_tart and end times of the segment in hours, minutes, seconds, and milliseconds. If a time se_mez_l

is Sl,e('ified, all eight time fields must be present, whether they are zero or not. The eight time fiel(l_

call 1)e delimited by blanks, commas, dashes, slashes, periods, or any mixture of these; no signitican('e

is attach0(t to the delimiter. Note, therefore, that 10:00:00.5 would represent 5 msec past 10- ,,)l 0.5

_e(. Tim equal sign shown in the example is optional.

h(,u can omit the time specification from _he copy command, using just

copy

ltl this (",_,_f,. a time interval of 0 to 24 hr is assumed; this usually causes all the times from the it_l,Ut fib'

to h_' col)led (unless the input file has times outside this range, which is not colnmon but o('casi()tl_lll.v

r('s,llts from special conventions). The copy command will skip any req_msted times not pres_mt (,ll I i_,'
illl)ut file.

You ran have multiple copy commands to specify multiple time intervals. For instan(e, tim r(,JTI

lll;llld h_'([UOllCe

lead someFile

signals +all

write myFile

copy time = 10:0:0:0 - 10:0:5:0

copy time = 10:1:0:0 - 10:1:5:0

copy time = 10:2:0:0 - 10:2:5:0

quit

copies all the data from three 5-sec time intervals of som,_File to myFile. When multiple time iliterval_

are requested like this, the intervals should be nonoverlapping and in time sequential order. Ot h,,rwi_,,

the frames on the output file may be out of time sequential order, which causes problems with mai,v

programs (including GetData). GetData will print a warning message if this occurs.

The quit command closes all files and exits the GetData program. This is the normal ',vav t_l

terminating a GetData run. A system-dependent end-of-file from the terminal will also be interl_ri, i_,,l

as an implicit quit command, but the explicit quit command is less confusing.

2.5 Controlling the Output Frame Times

All time history data files manipulated by GetData are organized into frames, also called records, l':ach

frame contains a time value, called the time tag or frame time, phis vahies of the signals at or iwai

that time. For the moment, we assume that the signal values are exactly at the frame time; secliot_ 2.7
discusses the more complex situation.

In the simple examples of section 2.4, the output frame times were exactly the same as the inl)Ui

frame times in the requested time interval. This is the simplest means of de_fining the output frallw

times, but it is not adequate for all applications. GetData provides two methods of defining the _lllllilll
frame times, controlled by the thin and dt parameters in the copy command.

The first method is based on thinniilg the input frame times. It sets the first output frame lime ill

an i_terval to equal the first input frame time in the interval; thereafter, the output frame limos ar_

equal to every thinth input frame time until the end of the requested tinie interval. You ,,;_,l_,ct lhi.,

nlethod by specifying the value of thin as a keyword argument to the copy command. For ex'alilt+,.

copy time=10:0:0:0-11:0:0:0 thin=2

in_'ans to make output frame times for every second input frame time between 10 and 11 o'clock.

Nel_alive or zero vahies of thin are illegal. The value 1 makes an outptit frame lime f.r ev_,rv ilil,li
franlo time in the interval.

Th, thinning method makes no attempt to generate a constant sample rate in I tie output: it Ol)oralo_

stricllv and simply by thinning the input. For instance, if the input franlelinles were al 0, 1,'2, 3,.1.

5, 7, _. 9, 1G.... msec after the interval start time, then thinning by 2 will t)ro(tut, e OUll)Ul fralll_,s ;_i

f). 2, .I, 7, !).... Insec after the interval start time; the algorithm makes tit) al'enli>t to coml)_,_sale t'_w
ih,, "'missing" franie at 5 msec after the start.

copy time:10:0:0:0-11:0:0:0 dt:.O02

means to make output frames spaced exactly (to floating-point precision) 2 msec apart between 10 and

11 o'clock. The input frames can be at a_y sample rate or can even be sampled at irregular times.

Negative values of dt are illegal; a zero value disables this method and is equivalent to specifying

thinffil.

The implementatio,_ of the dt parameter makes one exception to the principle of constant output

sample rate. If there is no input frame within 1 sec after a proposed output frame time, the output

frames will be omitted until after the next available input frame time. Thus the program will skip

large time dropouts in the input but interpolate through small ones. A message will be printed so that

you will be aware of the omission. Signal skews (section 2.7) are not considered in this algorithm, so it

may have problems if all the signals on a file are skewed by a second or more (but that is not the best

way to specify uniform large skews anyway). The 1-sec criterion separating small dropouts from large

ones is currently hardwired into the code, thus the program will not work well with input data rates

less than 1 sample/sec.

This feature is intended to make it easy to work with files having sevelal disjoint time segments of

data. A command like

copy dr=.02

will make output frames at 50 samples/see during the time segments present on the input file I)ut will

not waste huge amounts of file space tilting out 24 hr of interpolated data at this rate. Withodt the

special treatment for large time dropouts, you would have to determine what time intervals were on

the input file and make a separate copy command for each interval to azhieve this result.

The distinctions between the effects of the thin and dt parameters are critically important for

some appl;cations. The dt parameter gives a constant output sample rate, which is required for some

analysis techniques. Hewever, the output frame times resulting from the dt parameter will generally

lie b_tween input frame times, requiring some form of interpolation of the data (see section 2.8). The

thin parameter avoids interpolation (unless you have time skews or multiple input files) but does not

guarantee a constant output sample rate unless the input sample rate is constant. The ihin parameter

often uses substantially less computer time.

The keyword parameter nTimes can be used in conjunction with either the thin or the dt parame-

ters. The nTimes parameter specifies a maximum number of output frames that will be written. It is

most useful for debugging, when you want to look at only the first few frames of output. For instance,

the command sequence

read inFile

signals +all

write outFile

copy nTimesffi5

quit

copies the first five frames of inFile to outFile without requiring you to specify the times of those fram(,s.

(;ttData expects its input files to be in time sequential order. Furthermore, there is a finite toleran_'e

of (}.1 msec used in sew:ral places to avoid roundoff problems. GetData prints a warning message

whenever the input times are out of order or spaced less than 0.1 msec apart. Such inp,al ['tames

may cause some of the input data to be discarded. One consequence of the 0.l-reset tolor;,nro is l]|a!

(;rtl)nt, does not work v, ell with sample rates greater than about 10,000 samples/see. This toh,ram'e

,'ann.t r,rrently be changed without recompiling the program.

2.6 Merging and Splicing Input Files

Many applications require that data from several input files be combined and written on a single output

file. GetData provides two mechanisms for combining data from multiple input files; we refer to these

mechanisms as merging and splicing.

Merging is the combination of data for the same time interval from multiple files. The (tiifereat

input files contain data for different signals. To merge data from multiple files, you must specify all the

file names, separated by commas, in a single read command. The read command may have continuation

lines but must not be split into separate read commands. For instance, the command

read /user/maine/firs_LongFileName, &

/user/maine/secondLongFilename, &

/user/maine/thirdLongFileName

opens all three specified files and allows you to merge data from them. However, the sequence
of commands

read /user/maine/firstLongFiieName

read /user/maine/secondLongFilename

read /user/maine/thirdLongFileName

opens the specified files one at a time. Each read command closes all previously opened input files.
Therefore, this sequence l_aves only the data from the third file accessible.

GetData is limited to 10 simultaneously open input files. It is also limited to a total of 2000 total

input signals, no more than 1000 of which can come from a single input file.

When multiple input files are open, the signals command automatically determines which input file

contains the data for each input signal used. There is no outward difference in the usage of the sig,ml,_

command. Because the input signals are selected solely by name, there is no way to indicate yot:r

intent when the same signal name appears on two or more of the input filps being" merged. You can

resolve this ambiguity by first copying one or more of the input files to temporary files with r('named

signals; section 2.9 describes how to rename signals.

The input files being merged are not guaranteed to have the same frame times. Therefore, i! is

important to consider the issue of interpolation (section 2.8). If you use the thin parameter of th(, copy

command, the thinning is based on the frame times of the first file in the file list of the read command:

the data r,,x all other files are interpolated as specified by the method command.

Splicing is the construction of a single output signal that is taken from different sources for (tifforent

time segments. You specify splicing by inserting other commands between copy commands. 'l'hero are

two major forms of sp!icing, distinguished by what kinds of commands are ins('rted.

On_, form of splicing is to change the input file or files between two copy commands. The s+,<lu(,nc(,
of comman(Is

read filel

signals alpha, beta

write outFile

copy time = 9:0:0:0 - 9:0:30:0

read file2

copy time = 9:5:0:0 - 9:5:10:0

quit

makes an output fde with a 30-sec segment of data from file1, followed by a lO-sec segment from /ih2.

This example assumes that both file1 and file2 have signals named alpha and beta; because there is

no signals command between the copy commands, the previously specified signal list remains ill elfe(:t.

Another form of splicing is to change the signal list between two copy commands. The sequ(mce
of commands

read inFile

signals alpha, beta

write outFile

copy time = 0:0:0:0 - 9:29:59:999

signals alpha, betaBackup

copy time ffi 9:30:0:0 - 9:30:59:999

signals alpha, beta

copy time = 9:31:0:0 - 24:0:0:0

quit

copies alpha and beta except for a 1-min segment where betaBackup is substituted for beta (1)erhap,_

tile primary beta data were invalid during that segment). This kind of splicing should be done with

caution because GetData has few means of verifying that your specifications make sense; for instal_ce,

you might have spliced a totally unrelated signal in place of beta. The signals appear on the output

file in the same order as listed in the signals command. For most purposes, the order of the sigltals

is irrelevant because you select signals by name rather than by position. However, when you insert a

signals command between two copy commands, the splicing depends on the order because the ._Jgzlal
names may be changed.

A single output file contains only one signal name per signal; there is no record of any name <'hatlges

that may have occurred by splicing. Also, the number of signals on an output file cannot be _'han_ed

by splicing. If you try to splice a time segment with fe_er than the original number of signal_, the

remaining signals will contain unpredictable garbage for that time segment; if you try to splice iJ_ more

than the original number of signals, the extras will be ignored. The names and number of si_rtals

on an output file are established when the write command is encountered. Any subsequent ._ig,_,l.,

comman¢;s cause splicing. Because of the potential for undetected errors, GetData gives a prott_illerl!
warning message whenever this kind of splicing is attempted.

(;etData does not support multiple output files open at the same time. Each u,riie comma1,] ¢';=1_

aame only a single output file. You can have multiple write commands in a job, but each oi=_ _1_._,,_

:tny previously open output file and opens a new one. The sequence of commands

read inFile

signals alpha, beta

write outFilel

copy time - 9:0:0:0 - 9:0:10:0

write

signals p, q, r

write outFile2

copy time = 9:0:0:0 - 9:0:10:0

quit

I0

copies a segment of alpha and beta data to outFilel and then copies p, q, and r data to outFile2 for

the same 10-sec segment. The wr/te command with no arguments causes outFilel to be closed without

opening another output file. This is not necessary, but if you omit that command in this example,

GetData will print a warning message about splicing when it encounters a signals command while an

output file is open. Because there are no copy commands between this warning and the subsequent

write command, no splicing would actually occur.

All the operations discussed in this section can be mixed in the obvious ways. A single GetData

run can involve merging, both kinds of splicing, and changes of the output file. For example, the
command sequence

read inFilel

signals alpha, beta

write outFile

copy time - 9:0:0:0 - 9:0:9:999

read inFile2, inFile3

signals alpha, betaBackup

copy time = 9:0:10:0 - 9:0:20:0

quit

involves merging and both kinds of splicing.

i I

41

2.7 Applying Time Skews

The data files manipulated by GetData have only one time tag associated with each frame of data.

The data frame generally contains several data values, which are actually measured at slightly different

times. Tile data files do not contain explicit time tags for each individual data value. There would be

substantial overhead in saving an explicit time tag with each measurement. Instead, we assume that

tile times of the individual measurements can be implicitly deduced from the frame lime tag.

The simplest approach to computing the times of the individual measurements in a frame is to

assume that they all equal the frame time tag. This is often an adequate approximation; lhe error is

usually less than the sample interval and rarely more than a few times the sample interval. A,mlvsis

programs ahuost invariably assume that all the data values in a frame have tile same Ineasur01li(,nt

times. Some applications are very sensitive to errors in tiffs assumption, giving significantly err()jh_,ous

results if there are time errors of more than a few milliseconds (or even less). Other applic;lli,)tls for

Ill(' same data can tolerate time errors as large as seconds.

(h tl)ata is a utility program rather than an end application. The tinting accuracy require,_.,nts f-r

(;,tl)uta depend on the application of the data. If tile application is insensitive to time errors on the

,)rder of the sample interval, (;etData carl use simple at)proximations for tile measurement limes. If

the al_plication needs precisely time-tagged data, GctData must treat the time tags with corresp-vlding

;.'curacy, accounting for tile differences between the actual measurement times and the frame time tags,

The lime skew of a measurement is defined as the actual measurenwnl lime minus the frame

ti.lo tag. The simpl,, algorithms described previously approximate the skew as zero. When Ibis is

not ade<l,ate , (h'tDat,, can apply nonzero skews. GctData assumes thai the skew for each sig,;ll is

c<,lslant froth frame to frame; more complicated sit,aliens can be addressed by spoci;d p;_lches, which

are not provided as part of the standard p_ograrn.

'l'illlo :_kpws can arise fronl Inarly ¢allses. Most instrulllelltation svstolns s;t.llll)]p t lie lllO;|sllr4'lllPllls

s"qu,'ntially durinK the time interval; it is convenient to define lho frame lime taK to be lht, li.., ;ll lh_,

II

°-_ _.

begining of the interval, giving a skew that is dependent on the measurement sampling sequence. The

physical instruments have dynamic response characteristics that can often he closely approximated as

time lags; the data sampled at a given time represent the physical value for a slightly earlier time.

Signal-conditioning filters also cause lags in the data.

The user must determine the total skew from these and other sources; GetData has no way to

calculate what the skew should be. There are two ways to specity skew values to be used by GetData:

the skew command and the fSkew parameter of the read command.

The skew command is the primary means for specifying skews in GetData. Any command name

beginning with skew will be accepted as a synonym. The body of the skew command consists of any

number of parameters in keyword syntax, separated by blanks or commas. The parameter names must

be the names of input signals or filtered signals. You cannot apply skews directly to calculated signals

or output signals, but you can apply skews to the input signals used in a calculation. The parameter
values are the skews in seconds. The command

skeu alphaffi.02, beta-.02 p--.Ol

defines alpha and beta to have skews of 0.02 sec and p to have a skew of -0.01 sec. The skew for a,L_

parameter not specified in a skew command defaults to zero.

Eve,'y time a read command is encountered, GetData resets all signal skews to zero. Therefole,

the skew command must follow the read command. Furthermore, if you are splicing data from two

files, you must repeat the skew commands after the second read command if the same skews apply to
both files.

There are significant performance penalties for processing signal skews, and these penalties become

larger as the skew becomes larger. For input files that have no active signals with skews or linear

interpolation (section 2.8), the program uses a special-case fast algorithm. As soon as an input file has

a single active signal skew or linear interpolation, the special algorithm no longer applies for that file
and the performance becomes substantially worse.

There are also limits to the magnitudes of signal skew that can be applied. These limits are functions

of several factors and can be increased if needed (but this will cause further performance degradation).
There will be a warning message if you exceed the limits.

A second means for specifying skews to be used by GetData is the fSkew parameter of the read

command. This parameter gives a skew that is added to the frame times of a file to obtain "c()rrecle(t"

franw times. This corrected frame time is used in place of the raw frame time throughout (;ctl)_da. If

any skews are ."0coiffed in skew commands, they apply in addition to the file skew.

You give the f,_'k_'u, parameter in keyword syntax, with the skew value in seconds. Each tih, named

in a read command has an independent fSkew parameter, which must follow the corresponding file
name, delilnitod by a blank. Tim command

read filel fSkewffi5.6, file2, file3 fSkewffi-50

_p,,ifips st skew of 5.6 soc for filel and -50 sec for file3. The skew of file2 is not specified and d,'f;_ulls
to z,,ro,

The fih. skew is similar to an equal skew applied to every signal in the fih., but there ;ir,, subtle

diff,,ren(.es. Th,, fib. skew affects tlie roml),tation of the (,utput frame times discussed in s_,('li()ll 2.._. but

th,, siKwlal skews do not. More importantly, the file skew ha_ no limitations or i,erformanco implic;lli_m_.

12

®

"File file skew may safely be several hours (perhaps to convert between G.m.t and local time). Individual

signal skews cause severe performance degradation in GetData when they exceed a few times the sampl,.

interval. Therefore, if all the signals in a file have skews that are large relative to the sample interval.

it is most efficient to specify a file skew near the mean of the skews.

2.8 Interpolating in Time

Each output frame from GetData has a single time tag and data values at or near that time. As

discussed in section 2.7, most applications assume that the data values were measured precisely at the

frame time, and some applications are very sensitive to errors in this assumption. GetData must be

able to produce output files suitable for applications with precise timing requirements.

}towever, the raw data measurements are seldom conveniently available at precisely the required

times. Section 2.7 discusses how GetData computes the precise times of the input signals, and sec-

tion 2.5 discusses bow it determines the output frame times. If there is only a single input file with

no signal skews and if the output frame times are determined by thinning the input frame times, then

all the input signals will be available at precisely the output frame times. In more general cases, the

sig;tals must be interpolated to the required output times.

Note that interpolation applies only to input (or filtered) signals--not to output siguals. In i_anv

cases, each output signal corresponds to an input signal of the same name, making the (list it_ctioh moo_.

When an output signal is a calculated function of several input signals, it should be fairly olwiou_ th_tt

the input signals need to be interpolated to common times before the calculation can be done. ll.wevor.

when an output signal is just a renamed version of an input signal, it is easy tc get confused.

GetData provides two interpolation methods: hoht-last-value and linear interpolation. The hold-

last-value interpolation uses substantially les_ computer time but is inadequate for many tixuo-sensitivo

applications. Linear interpolation provides more accurate results for those applications neediztg them.

Iligher order interpolation algorithms are possible, but it is difficult to justif.v their use in the COltleXl of

imperfectly measured time history data. Note that there are some signals that cannot be meaningfully

interpolated with any method other than hold last value; for instance, a digital word may just be a bit

pattern without a reasonable numeric interpretation.

You use the method command to specify the interpolation methods. Any command name he,inning

with moth will be accepted as a synonym. The syntax of the mtthod command is very similar t() thai

of the sk_u" command. The body consists of any number of parameters in keyword swltax, sopai',_od

bv blahks or commas. The parameter names must be the names of input signals or filtered .,i_n;d_.

The parameter values must be either hold (for hold-last-value interpolation) or interpolate It'ol

linear interpolation); any values beginning with h or i will be accepted as synonyms. For eXaml>l,'.

|he ¢()lnlllan(]

meth alpha=interp beta=i ale=hold-last-value mach =h

_pecilios linear interpolation for alpha and b¢ta and hold-la.st-value interpolatiotl for air ahd ,,mch.

If most of or all the signals in an input file will use the same interpolation method, you can simplif.v

the specification by using the hold or interpolate switches on the wad command. These s_vitches control

the default interpolation method to be used for any signal in the input file not named ill a m_thod

ccmlmand. The at, rlu_lat* switch is an antonym for hold and can he abbreviated to auyt hitIK bogilluiltg

with interp. Each file named in a read command has independent hold and i,tcry,olate switch+'_. _ hich

must foll,_w the c,rrospondinK file name, delimited by a blank. If neither _witch is specified fi,r ;, ill..

the d,,faull is to use h_hl last-value interpolation, l:or example, the sequence of conlll_all_l_

|

read filel-hold, file2, file3 +interp

method dwl=hold alpha=interp

specifies linear interpolation for signals on filel and file3 (-hold is equivalent to 4interp). The method

for file_ is not explicitly specified, so it defaults to hold-last-value interpolation. The signal dwl will

use hold-last-value interpolation, and alpha will use linear interpolation, regardless of which input file
they are on.

All previous interpolation method specifications are discarded whenever a read command is en-

countered. Therefore, the method command must follow the read command. Furthermore, if you are

splicing data from two files, you must repeat the method command after the second read comment if

the same interpolation methods are to be used fo: both files.

Linear interpolation requires more computer time than hold-last-value interpolation. For input file,_

that have no active signals with skews (section 2.7) or linear interpolation, the program uses a specit,1-

case fast algorithm. As soon as an input file has a single active signal skew or linear interpolation, the

special "algorithm no longer applies for that file and the performance becomes substantially worse.

2.9 Selecting and Defining Signals

]'he signals command defines the signals to be written on the output data file. Section 2.4 describes

the simplest forms of the signals command, and section 2.6 discusses the role of the signals command

in merging and splicing. We now document the syntactic details and full capabihties of the signals

command. The most important feature not covered in previous sections is the ability to defit_e signals
as calculated functions.

The full syntax of the signals command is

signals [*alll+addl+delete] outSigl[=ezprl] outSige[ffiexpr2] ...

where the square brackets ([]) indicate optional entries and the vertical bars (I) separate alternatives.

Any command beginning with sig will be accepted as a synonym for the signals command.

The optional switches all, add, and delete specify what will be done with the remaining arguments.

No more than one of these switches is allowed in _ single signals command. If one of these switches is

present, it must be the first argument of the command. Only the ÷ form of the switches is recognized:
you cannot, for instance, specify -delete.

If none of the optional switches is specifed, the remaining arguments define the signals to be written;

any previously defined o,tput signal definitions are discarded. Sections 2.4 and 2.6 show examples of
t his .sago of the signals command.

If the add swilch is specified, the remaining arguments define additional signals to be wrilter;.

Th,'se new signal definitions s.pplement, rather than replace, any previous output signal defi,itions.

If there are no previous definitions, the effect is the same as if the add were omitted. The add swilch

is a conw, nience feature that allows you to break a long signals command into a sequence of shorlor
(,_,,s. l"or examph,, the command sequence

signals alpha bst_

signals +add p q r

is .quival.,l t. th_ single comman(I

14

signals alpha beta p q r

The add switch is often useful in conjunction with command sequences also involving tile other ._ig,l_ll._
command switches.

If the all switch is specified, the output signal list will be defined to consist of all currently available

signals. This switch is heavily used; some applications would be unduly burdensome without it. If ¢dl

is specified, any remaining arguments of the signals command are ignored. (Future versions of G_tl)t_tc_

might generate an error message if such discarded arguments are present.) Section 2.4 shows exampleg
of the all switch.

If the delete switch is specified, the remaining arguments specify signals to be deleted from tile

output list. Anything beginning with +del will be accepted as a synonym. When this switch is used.

the optional expressions in the signal definitions are irrelevant; only the names of the signals to be

deleted are required. Any expressions present will be ignored. This switch is most useful in command

sequences also involving the all switch of the signals command. For example, the sequence

read inFile

signals +all

signals +del alpha beta

write outFile

copy

quit

copies all the signals except alpha and beta from inFile to outFile. If inFile had many signals, any
other way of specfying this operation would be laborious.

The remainder of the signals command is a list of output signal names an_l optional expressions.

The signal names are separated by blanks or commas. If an expression is specified for a signal, the

expression is separated from the signal name by an equal sign; there may be blanks on either side of

the equal sign. The signal names are limited to 16 characters and cannot contain commas, equal signs,

quotes (single or double), parentheses, or embedded or leading blanks. Subsequent usage of the data

file will be easier if you also avoid plus and minus signs and if you start each signal name with a letter,

but these suggestions are not enforced. The output signal names must not be quoted. Like all other
(;_ tData input, signal names are cas, insensitive.

The optional expressions define how the output signals are to be computed. If the expression for

a signal is on|itted, the default computation sets the output signal equal to an input (or rah'ulato(l)

signal of the same name. All the examples given previously used this default. Note that even _h()u_h

an ol;tput signal and an inp,t signal may have the same name, GetData always considers theln l(_ I)(,
separate entities. For example, the command

signals +delete alpha

<t_,i, ,os only the output signal definition for alpha; it does not affect the existence of an intmt signal
:tamed ,llpha.

Only si_,_l)l(, linear expressions can be defined using the expressions in the signals command. If 111(_r_,

('(,mt)licated expressions are required, they re,st he coded in FOR'FRAN and installed as d_,s('rih,,d in

s_,(*tit)ns 3.1 and 3.2. If an expression is given, it consists of one t() five terms i, tim forms

15

sign constant

sign signal

sign constant * signal

Embedded blanks are not allowed in expressions; the blanks in these form descriptions should not be

included literally in the expressions. The sign is either + or -; it may be omitted from the first term of an

expressiop. The constant is an unsigned real constant with no exponent part. The signal is tile name

of an input or calculated signal; this includes only calculated signals defined by calculated function

subroutines (section 3.1) or filter subroutines (section 3.2), not calculations defined by expressions in

the signals command. The signal names follow the same syntax rules as output signal names. The

signal names in an expression may be enclosed in quotes (either single or double, but they must mat oh).

If a signal name in an expression contains plus or minus signs, or if it starts with a digit or a dot,

then it must be enclosed in quotes to avoid possible misinterpretation. Each expression is limited to a
length of 80 characters.

All signals used in the computation are skew corrected and interpolated to the output frame times
as specified by the method command.

The simplest and most common use of expressions in the signals command is to define an outt)ut

signal equal to an input signal of a different name. For example, the sequence

read inFils

signals +all

signals +delete pitch

signals +add q=pitch

write outFile

copy

quit

copies everything from inFile to outFile, renaming pitch to q. The following example defines an ave, rag(,

elevator position (de-avg) and a corrected angle-of-attack (alpha-cot) signal.

signals do-avg=. 5*"do-left"+.f*"de-right"

alpha-cor-" alpha-raw"+3. 125.q

Note the usage of quotes in the expressions but not in the output signal names. Other common ki,,d,_

of expressions include sign corrections, as in

signals an=-an

and constants, as in

signals altitude-O

('onsta,t signals might be used a.s placeholders for unavailable data.

The expression parser is quite crude; do not be confused by its similarity to FOIITRAN sy,,lax. It

cannot handle any forms other than those listed. ["or instance, the multiplying constant must ;tlway,s

l)re<'_'de the signal name instead of follow it. Exponent form (for example, 1.e-3) is not accopt,,d fi_r

i •

t

16

constants. Parentheses are not recognized. There can be no blanks in an expression, except around
tile equal sign.

The parser does not strictly enforce the rules for signal name syntax in all contexts. Yon cart

sometimes get by with expressions not meeting the stated syntax rules. For instance, 1.3 is interpreted

as a constant 1 times a signal named 3, even though the 3 is not enclosed in quotation marks. Such

expressions are confusing ,_nd are not guaranteed to work with future parsers; they should be avoided.

The on!y optimization of the expressions is a speci',d case for expressions consisting of a single sigJlal

name with the multiplying constant omitted or equal to +1.0. (The large majority of expressions have

this form.) Expressions such as 2+2 will work, but the addition will be repeated at ever,,, time point,
which is a horrible waste of computer time.

The signal name 1.0 is reserved for internal use. If you have an input signal with this name,
references to that input signal will not give the correct results.

Ill-formed expressions will give an error message and substitute a blank expression, which will give

the value O. If any of the signals used in the computation of an expression is unavailable, an error

message will be printed and the value 0 will be used for that signal. Although currently inactive, the

expression will be remembered and may become valid after a subsequent read command.

The program does not currently detect the occurrence of multiple output signals of the same name,

but files with such duplicate names may cause difficulties for you in the future. If there are multiple

input signals with the same name, there is no way to specify which one you want; the result is not
guaranteed to be repeatable.

2.10 Showing Signal Definitions

The show command shows information about the currently defined signals. The command list is

accepted as a synonym. The current version of the short, command has no arguments and can give

voluminous output to the terminal if many signals are defined; future versions may include arguments
to allow more selectiv,, display.

There are three sect!ons of the display from the shou, command: input signals, calculated signals,

and output signals. The input signals section shows the names of the signals available on all the

currently open input files. If any filter subroutines are installed (section 3.2), this section also iIiclu(les
the names of the filtered signals.

The calculated signals section shows what calculated function subroutines are installed (section 3.1)

and what signals they calculate. Parentheses around ther, ameofacalculated signal indicate that the

signal cannot t)e calculated because other signals required for the calculation are missing. The signals

shown in parentheses are not counted as av,tilable: they are included in this display only to dot'umellt
which c;th'ulatod signals are installed.

The Olltpllt signals section shows the names and expressions of all currently defined output signals.

If an output signal cannot t)e calculated because it depends on unavailable inl)ut signals, the t)utpiH

signal name will be shown in parentheses; the value 0 will be used for any such output signal.

2.11 Automating Command Sequences

._;onw (;tll)ata runs rottuire more command input than is reasonable to enter interactiwdv. Th,, _,sl

common _,xaml)le of such verbose input is a long list of signal names in the signals coninland: lists of

17

over a hundred naanes are not unusual Interactive input of such long lists is difficult and error prone.

The do command provides a me"_ons of automating such input.

The do command takes a single argument, which is the name of a file that we call a command

file. The allowable format for file names is system dependent. The do command will cause GetData to

begin reading command lines from the specified file. The file should be a normal text file containing

GetData commands exactly as they would be typed interactively; it can include continuation lines and

comments. The file can contain any number of GetData commands. Any GetData command, except

for a nested do command, can appear in a command file.

After executing -,allthe commands in the command file, GetData will again prompt for interactive

commands from the t_rminal (unless the command file contained an explicit quit command, which

is allowed). For consistency, do commands are also allowed ia batch runs, although they are not as

necessary in a batch context.

The do command is most useful when the same sequence of commands will be used in several

GetData runs. The command sequence then need be entered only once into the command file. If a

command is particularly long, it can be useful to put it in a command file even if only a single run

is intended, hLteractive typing of long commands is very error prone; putting long commands ill a

command file makes it less likely that they will be mistyped, and it makes correcting typing mistakes
less painful.

For an example of a do commaaad, suppose that the file sigs contains the lines

-- standard signal list for asro group

siguals

alpha = aa1022
beta --aai023

p = rgO002

q = rgO003

r = rgO004

mach= cfO001

alt = cfO002

with several dozen similar lines replacing the ellipsis. This is typical of many command files; it selects

a f_drly large number of signals and changes their names from forms meaningful to the instrumentation

engineers to forms more meaningful to data analysts. The command sequence

read inFile

do sigs

signals ÷delete alpha beta

signals ÷add alpha=bb1022 beta=bb1023

write ourFile

copy

quit

,sea most of the signal definitions from the sigs file but substitutes different definitions for allah,
and t_,'ta.

18

2,12 Running System Commands From GetData

There are many circumstances where, in the middle of a GetData run, you want to run some system

command. For instance, you may want to see the list of files in a directory because you do not recall

the exact name of a file you need. The sys command in GetData provides this capability.

This command is highly system dependent and may not be installed in all implementations of
GetData. It may have some limitations in other installations.

Anything beginning with sys will be accepted as a synonym for the sys command. The remainder of

the command after the command name is any legitimate system command, complete with any needed

arguments. After the specified command completes, control will return to GetData. The ELXSI

implementation will return to GetData even if the system command aborts for some reason; this may

not be true of all implementations on other systems. Some system commands may cause strange effects
too diverse to catalog here.

For example, on the ELXSI, the command

sys files

will list the names of the files in your current directory. The command

sys to monty "I'll get to it later. I'm busy now."

sends a message to another user without exiting GetData. Finally, the command

sys emacs cmdFile

enters the emacs editor to create a file called cmdFile; you might do this to create a command file to
be executed by the do command (section 2.11.)

2.13 Specifying File Formats

The file formats supported by GetData are determined by the particular set of time history ill(, in-

terrace routines (section 3.3) installed in the program. The available file interface routines may _arv
substantially at different sites.

The write command of GetData has an optional third argument used to specify the forma! of tlw
output data file. For example, the command

write outFile unc2

specifies that outFile is to be written in unc2 format. If tb_ third argument of the write command is

omitted, it defaults to crop2. (On systems that do not support this format, you might want to change
the defa.lt to uric2.)

'I'l,,, precise interpretation of this argument depends on the time history file writing routines in-

stalled. Soru_ specialized routines that support only a single file format may ignore th0 arg, utrwnl.

"l'h(` (Iofaul! routines currently installed at Ames-Dryden support m,ltil)le formats as spo(-ifi(`,l hy lhis

argument The formatscurr(`ntly supported by thesero.tines are the following:

19

unc2 uncompressed 2 format--This is a binary uncompressed format appropriate for use by many
computer programs.

cmp£ compressed 2 format--This is a binary compressed format for compact storage of large data

files. This format uses machine-specific features and is not included in the portable version of

the code. Similar formats could be implemented on other machines.

ascl ASCII 1 format--This is an ASCII format intended primarily for tape t'ansfer between different

systems. The format is highly portable. Files in this format can also be displayed on a terminal

screen or printed, although the lisl format is more legible. The ASCII format is far less efficient

than binary formats, and it should be used only in circumstances where the binary formats are

inadequate, notably transfer between incompatible machines. The ascI format consumes about

five times the file size of unc2 format and requires azl order of magnitude more processor time.

iisl list 1 format--This is an ASCII format suitable for printing or screen display. The format is

intended only for human use; there axe no routines provided for reading a file in this format.

Section 3.3 gives details of these formats.

There is no corresponding argument in the read command to specify the formats of the input data

files. The time history file reading routines axe normally expected to automatically determine the

formats of the input files. The routines currently installed at Ames-Dryden automatically recogni_,e

and read the unc_, crop2, and ascl formats. On some systems, this automatic format recognition

may be difficult to implement. Furthermore, there may be file formats in use that are difficult to

automatically distinguish on any system. In such cases, separate file reading routines will be required

for each format. Should this prove burdensome, it would not be particularly difficult to add arguments

to the read command to specify the input file formats. That would still require, however, that tile

user know which format is correct for each input file; it is far more convenient to determine the formal
autolnaticaJ]y where feasible.

If the desired formats are supported by the routines installed in GetData, file format conversion

is done as an automatic part of the copy operation. With the routines installed at Ames-Dryden.
the sequence

read inFile

signals +all

write /dev/tape/001234 ascl

copy

quit

copies all the data from inFile to tape number 001234, writing the tape in ASCII 1 format. The file

l,_Filc may be in any supported format (except lisl, which is not supported for reading). The sequence

read /dev/tape/O05678

signals +all

write outFile

copy

copies all the data from tape number 005678 to outFtle, writing the file in the default coml)rossed 2
f,_rmat.

2O

3 Programmer's Guide to Ge$Data

"[his section documents the FORTRAN code of the GetData program. The emphasis of the documen-

tation is on those areas of the code most likely to need modification for some purpose. Some portions of

the code are system dependent and mu_t be modified to install GetData on different computer systems.

In addition, there are several modules (sets of routines) intended to be user modifiable. It is possible.

of course, for a user to modify any routine in GetData. The routines labeled as user modifiable are

specifically designed for the installation of customized code. The interfa_ce to these modules is defined

in such a way that the user carl write customized versions without understanding the details of the rest
of the program.

3.1 Calculated Function Modules

A calculated signal (also called a calculated function) is a signal that is computed as a function of other

signals rather than being directly read from an input file. The signals command a!lows the definit;oI_

of some simple calculated signals as described in section 2.9. Calculations more complicated than those

_upported in the signals command can be implemented in calculated function modules.

Up to five calculated function mcdules, called CFI to CF5, can be inst_lled in GetData; this limit

can be easily modified. Each module can define an arbitrary number of calculated signals (subject

to the limit of 2000 total signals from all sources). Each calculated function module consists of three

FORTRAN routines (plus any subroutines that the thre,_ • primary routines might require). The basic

(;rtData program includes empty routines for all five calculated function modules. To install a cal-

culated function module, you must create a GetData program with the customized routines replacing

the corresponding empty routines provided with the basic program. The procedure for doing this
installation is system dependent.

"I'ile routines of the xth calculated function module are named allocateCFx, activat_('t.'x, and

doCFx; for example, the routines for the CFI module are aliocateCFl, activateCFl, and doCFl. Thc
_eneral roles of these routines are as follows:

aliocateCFz declares the names and allocatcz channei numbers for the signals calculated by this

module. This routine also locates all the input signals required for the computations; it disables

any calculations that cannot be done because of unavailable inputs. This routine is called before

any calls to artivateCFx or doCFx. It may be called multiple times in a single job if multiple
read commands are executed. The routine must redo all allocations on each call.

activateCF_e _ctivates needed calculatior, s. This routine determines which calculations are ne_'(h,d

for the currently requested output signals. It activates those calculations and d(,('l;_r,,s their

inl)llt signals to be needed. This routine may be called multiple times as the list of r,,(lUestod

output signals changes. It will always I)e called at least once between any call to allot, t, ('l"z and
subsequent calls to do('Fx.

doCFx evaluates calculated signals. This routine performs the actual computation of the ('alculat(,(I

signals. It uses channel numbers from all<s'ateCFx and activation flags from activat_ ('l"x. Thi_
rr)utine is called one time for each output frame.

The cb, tailed interface specifications for thos,, routines are given in the help fih,s (app. A). "l'ho saint)l,,
routin,,s mentioned in tit,, I!el t) files are listo(t in appendix II.

21

_g

Each calculated function module can use signals from the input files, the filter module, and lower

numbered calculated function modules. It cannot use sighals from higher numbered calculated function

modules or signals defined in the signal8 command. The calculations are performed immediately

before writing each output record; they have no intrinsic sasnple rates. The input signals used in the

calculations are all skewed and interpolated to the output times as specified by the method command
before the calculations are performed.

The calculated function modules are intended primarily for calculations that give each output value

as a function of input values at the same time. Slight extensions are possible; for instance, it is possible

to implement a simple differentiator in a calculated function module by internally saving time and data

values from the previous output frame. Such extensions are highly dependent on the output frame

times. Computations that involve substantial interdependence of data in different frames are probably
best done in a separate program.

Once a calculated function module is installed, the usage of the calculated signals is substantially the,

same as the usage of signals read from input files. For most purposes, the user need not even be aware

of the distinction between calculated and input signals. The only major distinction is in determining

which input files are required. The calculated signals will be available only if their required input signals

are available. This list of required input signals should be documented for each calculated signal.

3.2 Filter Module

Filters cannot be conveniently implemented in the normal calculated function modules because digital
filters are inherently linked to specific sample rates, whereas the normal calculated function modules

do not have inherent sample rates and may be called at different rates, depending on the requesled

output. Therefore, GetData makes special provisions for a filter module. Only a single filter module is
currently allowed; this module can support multiple filters.

The basic GetData program includes empty versions of the filter routines. To install a filter module.

you nmst create a GetData program with the customized routines replacing the corresponding (,ml)*y
routines. The Frocedure for doing this installation is system depe::dent.

The fundamental difference between the filter module and the other calculated function modules

is that the filter routines are linked to the input frame times instead of the output frame times. This

allows the user to freely select output frame times without affecting the filter characteristics. Th(,

interface to the filter module provides for simultaneous independent filters on different input files: this
complication does not arise in the other calculated function modules.

The filter module consists of the routines allocateFilt, activateFilt, reMapFilt, and doFilt. Th(,
general roles of these routines are as follows:

aliocateFilt declares the names and allocates channel numbers for the filtered signals. This r(,utin(,

also locates the unfiltered signals used as inputs to the filter module. There may be multil)h, _,lts

for the same input file number if there are multiple read commands; each cali must cornl)l ,1,,ly
redo the allocations for the specified input file number.

activateFiit activates needed filters. This routine determines which filtered signals arc, nee(l,,df_,r

the currently requested outputs. It activates those filters and declares their unfiltered inl,.t

signals to be needed. There may be multiple calls for the same input file number as the lisl _t
requested output signals changes. AetivateFilt will always be called at least, once botw,,ol_ ,nv

call to allocateFilt anti subsequent "alls to doFilt.

22

li, l/

:i

reMapFilt remaps filter channel numbers to compressed locations. This routine remaps the channel

numbers used by the filter subroutines. The channel numbers used in allocateFilt and activatcFilt

reserve channels for all signals available on each input file. For efficiency, the actual processing uses

a data vector composed of only the signals needed, with the unused signals omitted. Subroutine

reMapFilt remaps the channel numbers of all signals used in the filter module to channel numbers

in this compressed data vector. ReMapFilt is called at least once between any call to actit, ateFilt
and subsequent calls to doFilt.

doFiit evMuates filtered signals. This routine performs the actual filter computations. It uses the

channel numbers from reMapFilt. DoFilt is called one time for each input frame of each open
input file.

The detailed interface specifications for these routines are given in the help files (app. A). The sample
routines mentioned in the help files are listed in appendix B.

The filter interface conveniently allows only recursive causal filter forms; that is, the filters can

depend only on prior and current data, not on future data. There is no easy way to run forward-

backward filters or smoothers. Note that you can skew the filtered result to approximately comp(,nsate
for the group delay of the filter.

The filters can use only signals that come directly from an input file. Calculated signals cannot

be filtered (though they can use filtered inputs, which normally achieves about the same effect). The

input signals used for the filters are raw, without skew corrections or interpolation. The filtered resuh

may be skewed and interpolated in the same wa) as signals read from the input files. Normally, the

appropriate skew for the filtered signal is different than that for the rav signal.

3.3 File Interface Modules

GetData uses the time history file interface modules for all operations on time history files. These

modules are intended to be used in any program that reads or writes time history _tata files: the

modules ha'+e no dependence on internal data structures of GetData. The read and write modules are

independent to facilitate format conversion applications where a program uses the read nmdule for one
format and the write module for a different format.

To use GetData with a particular set of read and write modules, you must create a version <)f

(;ctData with the customized routines replacing the standard ones. The procedure for (loin_ thi,,
installation is system dependent.

The basic GetData program includes a set of read and write modules that simultaneol,slv ._ul)port

multiple formats. Section 3.4 describes the specific formats supported by these modldes. The v(,ad

module automatically deternfines which of the supported formats to use for each input fih,: the sNl)-
t)orted formats were specifically designed to facilitate such automatic determination. It may 1_()I I),,

practical to iml)lement the automatic format determination on all systems. The write module' r('q,lil'(,s

explicit specification of which format to use for each file. Both the read and write nrodul(,s are str,l('

lured to allow easy addition of more formats. These multiple-format modules re(lute the lwcessity fl)r
creating multiple versions of GetData with different read and write modules.

The file read rood,lie consists of seven routines: openR, r,Yigs, ._ig._'R, chrm._R, rtwR, f_'crk, flbrM.
and closeR. The general roles of these routines are as follows:

openR ol)_m_ a file f_)r r_'ading. 'Fh(, fil_, name is supl)li(,d as an input argum_,1_t. This i_),,';iJ,_, nl,l_t

b_'('_dh,d hcf, re any ()th,,r reference to a file by the ro_l(I mo(I,ll(,. The ro;ttivl rottlvN_ , f,,,l_'li,),,

23

value of true if the open is successful. If the open fails for any reason, the function value returns

false. The most common reason for an open failure is that the specified file does not exist; security
limitations or unsupported file formats can also cause failures.

rSigs finds names of the available signals. This routine may be called any time after openR and before
closeR. Use of this routine is optional.

sigsR specifies which signals are to be read. This routine selects signals by name. This routine can be

called any time after openR and before closeR. The data vectors returned from subsequent calls

to/Read and/Seek will contain the signals specified in the most recent call to sigsR or chansR.

When a file is opened by openR, it is initialized to select all available signals; this default remains
in effect until the first call to sigsR or chansR.

chansR specifies which channels are tc be read. This routine is similar to sigsR, except that the

signals are specified by channel number instead of t)y name. The use of sigsR is usually preferred.

ChansR is provided primarily for support oi older programs and may eventually be phased out.

rewR po_itions the file at the first frame• This routine repositions the file so that subsequent calls to

/Read will return data starting at the first frame of the file. The file is automatically positioned
to the first frame by openR, so an initial call to rewR is not needed.

/Seek positions the file to a user-specified time and returns the first frame of data after that time.

The routine returns a function value of true if the operation is successful. If there are no data

after t he specified time, the routine returns a function value of false, and the returned data vector
is undefined.

/Read returns the next sequential frame of data on the file. The routine returns a function value of

true if its operation is successful. If there are no more data on the file, the routine returns a
function value of false, and the returned data vector is undefined.

closer closes the file. This routine should be used to close any file opened by openR. After clos_:R is

called, no further reference can be made to the file unless it is subsequently reopened.

The detailed interface specifications for these routines are given in the help files (app. A).

Tt.e file write module is somewhat simpler than the file reaa module because there are no issu,,s ()f

file positioning or signal selection. You must write the frames in time-sequential order, and you m,,sT

provide values for every signal in every frame• The file write module consists of three routines: open I1',
fli'rite, and clo._e W. The general roles of these routines are as follows:

openW opens a ill,, for writing. The file name is supplied as an input argument. ()th(,r input

argutnonts specify the names of the signals and the file format. The interpretation of the file

fl,rmat argument may vary in different implementations of the module; some implementali,ms

n.ay ignore it.. This routine must be called before any other reference to a file by the write n_odule.

The routine returns a function value of true if the open is successful. If the open fails for any

"_,ason, the function value returns false. Common reasons for open failures include invalid fih,
names, security limitations, and unsupported file formats.

fWrite writes a single frame of data to a file opened by openW. It should be call_,' once for each

frame t_ be written. The frame times re,st be in time-sequential order: tl t currel_tly
enfi,rced hut 1nay be in future versions.

24

cioseW closes the file. This routine should be used to close any file opened by open W. After c/o.w I1"

is called, no further reference can be made to the file unless it is subsequently reopened. The

close W call is mandatory; the created file is not guaxanteed to be readablc if it is not closed with
close W.

The detailed interface specifications for these routines are given in the help files (app. A).

Time history data files can be accessed either through the time history data file read and wriu,

moduies or through normal FORTRAN input-output statements. The same file can be accessed in

different ways at different times. Hobever, the two forms of access should not be mixed during a single

open. If a file is opened with openR or openW, it should be accessed only through the file interface

modules until it is closed. Any other reference to the f.]e, even something as simple as a rewind, n_ay
disrupt the operation of the interface module.

The following sample program fragment illustrates the use of both the file read and file write

modules. This fragment copies the signals named alpha and beta from inFile to outFile.

external openR, s igsR, fRead, openW

logical openR,fRead,openW

integer nSigs ,nAvail

parameter (nSigs-2)

double precision time,data(nSigs)

character sigs (nSigs),16

data sigs/'alpha,,,beta,/

if (.not.openR(ll.'inFils,,nAvail)) call abort('no inFilo')
call sigsR(11,sigs,nSigs)

if ('n°t.oponW(12,'outFile',nSfgs,sigs,,unc2,))

x call abort('cant open outFile')

100 if (fRead(ll,time,data)) then

call fWrite(12,zime,data)

gore I00

endif

call closeR(t1)

caXl closeW(12)

The subroutine abort referenced in this sample fragment is assumed to print an error m('ssago aud st,q_.

3.4 File Formats

The file road and write modules included with the basic (;etData program support the fl)lh,wiu_ f,mrfih, formats:

unc2 uncompressed 2 fi)rmat This is an uncumpressed binary format suital)le for most i,torual attd
in t('rprogram files.

crop2 compressed 2 format This is a compressed binary fi_rmat intended to save space when us(,,I

for large files. It is _uhstantially more complicated than unr2 format. 'I'hr ilnl)h'monlali,,n ,,l

this f(,rmat is highly syst_,m (h'l)entlent, so the forluat is disabh, d in versions of tlw ('(_(h, int,,u(I,,,[
for p(_rti.g

25

_tt

ascl ASCII I format--This format is intended for tape transfer between different systems. The format

is highly portable. This format is very inei_cient, both in file size and processing requirements,

so it should not be used when one of the binary formats will work. Files in this format can be

listed on terminal screens or printed, but the result is not particularly easy to read.

lisl list 1 format--This format is intended for listing to terminal screens or printing. The re_d module

does not support this format; files written in this format are only for human examination-not

for input to computer programs.

Detailed descriptions of these formats are given in the help files (app. A). There is also a help filefor

uncl format, which is supported in some versions of the modules.

The following is a listing of a short sample filein ASCII 1 format:

fol"mat ant 1

nChans 12

names alpha q

art aJ[_ILT

p r phi
dataO01

34988.023

5.2135009765625

.16879763793946

-2.9539794921875

34988.049 4.0593261718750

5.2".35009766625 1.0139465332031

•231103040277968-04 .13263320922852

-2.3539794921875

34988.073

5.2135009785625

.16679763793945

-2.9539794921875

34988.099

5.2135009765625

.33340454101563

-2.9539794921875

v theta

de beta

3.8622438523438 -.27187347412109 357.82812500000

1,0374450683694 .64163208007813E-01 152.17187500000

-.57855334472656E-01 .25144968496094 -.12891769409180

3.9017333984376

1.0021972656250

.13263320922852

3._23046875000

1.0256958007813

.89379882812600

-.17108917236328 357.92187500000

• 620574951171888-01 152.28000000000

• 44789886474609 -.42504119873047

-.702991488_96708-01 387.92187500000

• 283679962158208-01 152.25000000000

-.43224334716797E-01-.42504119873047

-.37268540527344 357.92187500000

.810089111328138-01 182.25000000000

.64434814483125 -.12891769409180

,

The same data in list 1 format iook like

09.43.08.023

09.43.08.049

09.43.08.073

09.43.08.099

alpha q v theta an

ax qbar de beta p
r phi

3.8622 -.27187 357.83 5.2135 1.0374

• 641638-01 152.17 .16680 -.576658-01 .25145
-.12892 -2.9640

4.0693 -.171C9 387.92 8.2136 1.0139

.620578-01 162.26 .23110E-04 .13283 .44790
-.42504 -2.9540

3.9017 -.702998-01 357.92 5.2135 1.0022

.28388E-01 152.25 .16680 .13263 -.43224E-01
-.42504 -2.9540

3.8623 -.37267 357.92 5.2135 1.0257

.810098-01 152.25 .33340 .89380 .84435

-.12892 -2.9840

"l'hr vinci, Tmc2, and rn, p2 fi)rmats are not printable.

26

. I#

5.5 System Dependencies

GetData is coded in FORTRAN 77. It largely conforms to ANSI standard FORTRAN (ref. 2): this

section describes all nonstandard or nonportable usages in GetData.

The program requires a full language FORTRAN 77 compiler; it makes extensive use of features

included in the full language standard but not in the subset language. The items discussed in this

section involve either extensions ¢o the full language, details left unspecified by the standard, or system
routines supplied independently of FORTRAN.

The program code is divided into several separate files. The discussions in this section are orgal_ized

by the source code files to which they apply. The following items apply throughout the progralJ

include syntax--The code is maintained on the ELXSI with common blocks and some other code

fragments segregated into separate files. Include directives specify where these fragments should

be inserted into the source code. Although most systems provide such a capability, the specific

syntax varies widely. Some distributed copies of the code have the fragments already inserted.

which simplifies the initial conversion issues but complicates subsequent program maintenallce.

Precision--All floating-point variables in GetData are declared double precision, which is appropriate

for scientific data on 32-bit systems. Double precision will work on 60-bit ,and 64-bit systems.
but it is probably wasteful.

The current code does use single precision in two routines: fRunc2 and fWunc2. These routines

read and write unc2 format records, which are defined to contain single..precision data values

to conserve file space. The fRunc2 and fWunc2 routines appropriately translate betweez_ _he
double-precision data in their arguments and the single-precision data in the files.

GetData adheres to coding practices that facilitate easy changes of the precision. The program

can be converted from double precision to single precision simply by replacing all occurrences of

double precision with real. The only additionM change required is ili routine o lVuncl, which

deduces the number of signals in an obsolete uncl format file; a single-precision version should
subtract only one word for the time variable instead of two.

Long names--GetData does not conform to the ANSI limit of 6-character symbolic names. No
names longer than 15 characters are u_ed except for a few F'LXSI intrinsic names that are not
portable anyway.

ASCII character set--GetData uses the full printable ASCII character set, including lowercase and
special characters. Character comparisons are explicitly coded to be case insensitive. There i_

no explicit dependence on the ASCII collating sequence. The special characters are used olJlv iI_

noncritical places such as help file text; any legal characters can be substituted withoul impairil_
program functionality. No nonprintable characters are used.

Conversion to other character sets is a simple automatic translation. After such translalion, lh0

code shouhl work in other character sets, including EBCDIC and uppercase-onl:, sets.

Unit numbers--ANSI does not completely specify the set of allowable file unit numbers. Fib, i,nil

numbers in GetDeta are all specified by parameter statements to facilitate changing them. "l'h,

unit numbers most likely to need changing are those fi,r the standard input and ¢)til, I)ll! files

(the terminal for interactive jobs); these are specified by the parameters input and o,put at the

beginning of every routine. The code provided uses unit number 5 for input ;_nd 6 for outp_;t.

27

open statements--Open statementsare common placesforsystem-dependentcode. Severalspecific

instancesare mentioned laterin thissection.You may findthat efficiencyor operatingconve-

niencecan be improved by making other changes to open statements,even ifthe program works
as delivered.

The allowable file names for open statements are not specified by the standard and may be
different on different systems.

readOnllt parameter----A nonstandard readOnly parameter is used in several open statements. This

parameter reduces the chances of aAzcidental file corruption and facilitates concurrent access to

the same file by multiple jobs. It is currently used in routine doDo and in the openR routines for
various file formats.

The readOnly parameter is noncritical and can be removed for systems that do not support it or
an equivalent.

implicit none_The GetData code uses the implicit none statement. This statement helps doTe, t

coding errors but has no effect on the generated code. These statements can be removed sal,,y
if your system does not support this feature.

Initia]ization--GetData does strictly adhere to the standard in avoiding references to uodefined

variables. Any local variables that are required to retain their values between calls to a routine

are declared in save statements. The program will therefore work correctly with compilers that
allocate local variable storage on a stack.

The following items apply to the rein.lille. This file contains general utility routines used in GctDat_
and several other programs.

booboo routine--Subroutine booboo calls the ELXSI intrinsics S$1nit, DCl$StaekTrace, and $Put tc

format and print a traceback. This should be converted to calls to appropriate system routines

on other systems. On systems that do not provide user-callable traceback routines, it inav be

possible to obtain a traceback by intentionally causing a run-time error. If there is no easy'way

to obtain a traceback, booboo can simply stop after printing its error message. The trace_ack is

not critical except a.s a debugging aid. The program is not supposed to call booboo except as a
last resort when a program bug or other unrecoverable problem is detected.

Subroutine booboo should fever return to the routine that calls it. A call to booboo generally il_di-

tales that the program is not in a state to proceed successfully. A return may have unpredic|able
results, such as exceeding array limits.

clock routine--Subroutine clock calls system routines date and time to obtain the date and lime

as printable strings. This function is used only for labeling. If corresponding routines ;_r_, I_)T
available, you can change _his routine to return blank strings.

String functions---Subroutines upCase and loCase and function strEq call ELXSI intrinsics for st ri_l_

case conversion and case-insensitive comparisons. Machine-independent versions are in('lu(l(,d _,_

('omnlents in the code. The machine independent versions are substantially (up to an (,rd_,r _,1

nlagnitu(le) slower than the ELXSI intrinsics. The machine-independent up('asr and I(,('_
make assumptions about the character set that are technically nonstandard I)ut work in m()sl

environments, including EBCDIC and upl)ercase-only systems. (These routines Io;ive thp dal;_
unchanged on ||ppercase-only systems.)

recLen routine---The recLen function uses a system-dependent error code. This function is used only

for support of the obsolete uncl file format; it can be ignored if support for that format is not

needed. If support for uncl format is needed, it is easy to deduce the required error code.

sysErr routlne---Subroutine sysErr calls the ELXSI intrinsic $ErrorMsg to print a detailed error

message about the preceeding input-output error. This is used in GetData to help the user

determine why a file could not be opened. Some systems may need the value returned by tile

iostat parameter of the open command. Therefore, this value is passed a_ an argument to sysErr

even though the ELXSI does not use it.

This function is noncritical _nd can be deleted if no corresponding system error message feat ures
are available.

The foUowing items apply to the getCmd.ffile. This file contains the "front end" routines to read

user commands from the terminal or alternative input files. It also contains code to implement sonm

commands, such as help, that are pertinent to many interactive programs.

File kind intrinsics--The ELXSI mtrinsics FSSReturnFileKind and FRSFileDescriptor and the i)a -

rameter FSSTerminalFileKind are used by the function inCmd These intrinsics are used t() de-

termine whether input is coming from the terminal or not. This is then used to control wheth(,r

the program echos the input. This allows the program to echo alternative input files to the

terminal without duplicating the normal operating system echo of terminal input.

The echo function is noncritical. If your sy am cannot easily determine the type of input tile.

you can simply hard-wire the echo variable to false.

doSys routine---Subroutine doSys is completely system dependent. The purpose of this subroutine

is to execute a system command line from within the program.

Although very convenient, the doSys subroutine is not critical to the basic program Ol)erati()zl.

If you cannot implement an equivalent operation, you can make this subroutine print an ,,reef

message saying that it is uaimplemented. In this case, the sys and help commands will not work.

doHelp routine--the help command is implemented in subroutine doHelp by using the doSys roulit,,

to access the ELXSI help utility. It therefore depends on both a working doSys subroutine arid a

compatible help utility. It is very unlikely that a fully compatible heip utility will be availabh, (m

anything but an ELXSI. Also, the GetData main program calls the setHlp entry with _ Sl)e(ific

directory name applicable only to the Ames-Dryden system.

Although useful, the help command is noncritical. You can run the program with dollelp cll_t1_g(,(I

to simply print an error message and return. If some other system help utility is a,'ailablo, w,J

might reformat the hell) files a.s required and change dotlelp to invoke the corresponding hell,

utility. Alternatively, you could write code to perform at least the simplest function of t}le h(qp

utility. At its simplest level (a good onv does much more), a help utility just opens a t(,xt ill,

with a name constructed from the help argument and lists this file to the terminal screen. This

would not be overly difficult to do in standard FORTRAN.

The following items apply to the file interface modules:

Delete in openW--'Fhe op¢,_ W function should attempt to delete a file (if it exists) prior to writil_4

a new file of the same name. This avoids potential problems if some ehara(teristics (su_'h ;_s

record I,,ngth) of the old ill(, are incompatible with the format being written. The EI,XSI v,rsioll

L •

29

of open W uses the ELXS! intrinsic FSSDelete for this purpose. This code is "commented out"
of the version intended for other machines.

The issue of incompatible file characteristics may not exist on some systems. In that case, or if

operational use patterns assure that the old chazacteristics will always be compatible with the

new usage, you can omit this call. Otherwise, you must substitute equivalent system-dependent

code or use procedures that handle the problem external to the code.

Direct access open--Routines oRascl, oWuncl_, and oWascl do direct access opens on files later

used with sequential input-output statements. This is for ELXSI-specific performance and con-

venience reasons. There is no reason why standaxd sequential access opens should not work.

Block size---The open statements in oRascl and oWascl have block size specifications. These can

be removed safely for most applications.

Rapid file positioning--Functions fizedLen, nRecs, and /Sec have system-dependent code to do

rapid file positioning. This is primarily of concern for very large data files. If this code cannot

be converted easily, then fixedLen should be changed to always return the value false; this will

prevent fSec and nRecs from ever being called.

Open in openR--The multiple-format version of the openR function needs to be able to read at

least part of the first record of any supported file format without knowing which format the file

uses. The supplied version does formatted input from the file, which may have been written with

formatted or unformatted writes, depending on the file format. The standard does not preclude

formatted input from files written with unformatted output, but it does not require all systems

to support such an operation.

On some systems, this may be difficult to achieve in full generality. This may restrict the utility

of the automatic format recognition on such systems, possibly requiring manual external specifi-
cation of file characteristics.

crop2 format--The cmp°_ file format is highly ELXSI specific. This format is disabled ell versions of

the code mean1, for porting to other systems. Similar compression ideas apply to many systems.

but efficient ina01er, lentation may requirt, substantial work.

"l'he following items apply to the GetData main program or the routines specific to (;etl)ata:

Conlmand-line processing--The GetData main program calls the ELXSI $Checl,'Ar_s intrinsic to

process the command line used to invoke the program. GetData does not actually use ally

command-line parameters; the only effect of this call is to check for an erroneous comnland lin_,

and _ivo a roa._onal)le error message. Without this call, some cerumen(t-line errors tl_av ,allso

subst,qll0ll! error messag,_s in less obvious contexts. In most conversions, you should simpl.v _ltlil
this fall.

Performance testing code---The function copyl calls the ELXSI intrinsirs 03,'$R_ad('lm l'i,_, r altd

$3;tvitch L'ar. Some a.ssociated variables are declared with the nonstandard type intcg, r',_', lh,,_,,

calls and variabl_,s are used to compute performance statistics if activated by a sh_,ll _wit,h

variabl_,. 'l'h_' calls and associated code can be removed safely; they are primarily us,,d If_t

dow,l_q_ment;tl testing and might not be present in versions distributed for pr_duction Llso.

Default format--Subroutine p|Vrlte defines the default output file fi,rmat to be cnip2. 'l'ho _'1,p2

forraat is not supt)()rted in the portable version ()f the file interface module; therefl)ro, w_l will

l_robal)ly wall! to rhanlze this default to un_'_°.

_X
!

30

• J

3.6 Specific Conversions

This section documents the specific changes we have found necessary to convert GetData to some

other systems. These conversions were done az part of the program validation, not for operational

use. Therefore, we did not spend much time on obtaining the best efficiency or converting noncritical

features. Furthermore, our experience on these systems is limited; there may be better ways to do

some of the functions. For production versions, you will probably want to do further work, but those
rested changes give a reasonable starting point.

This section just briefly lists the changes required for these conversions. Section 3.5 further discusses
the conversion issues.

3.6.1 VAX-VMS Conversion--This section describes conversion of the code to run on a DEC

VAX running VMS (Digital Equipment Corporation, Maynard, Massachusetts).

The following change was made throughout the code:

include syntax--The syntax of all include statements was changed to

include 'whatever. com'

as accepted by the VAX compiler.

The following changes were made in the rem.f file:

booboo routine---The calls to ELXSI intrinsics were removed from the code in booboo. We do ,lot
know whether appropriate substitutes exist.

String functions--The routines loCase, upCase, and strEq were changed to use the "conlmenl,,d

out" machine-independent versions of the code. The VMS STRSUPCASE procedure could be

used in npCase, but we do not know of corresponding VMS procedures for loCase and strEq.

sysErr routine--Subro.tine sysErr was changed to print just the error number. Obtaining a more
reasonable error messal_e seems to be quite complex.

The following changes were made in the getCmd.ffile:

File kind intrinsics--'I't., calls in in('md to EI,XSI intrinsics were removed and echo was h_rdwirt,d

to false'. We do not know whether equivalent capability is easily accessibl0 und¢,r VXIS.

doSys routine--The body of do.%'ys was r_'placed with the si,gle line

call LIB$gpawn(tail)

dolleip routine---'l'ho body of doHHp w'a._ removed, and code Io print a warning n.,_;,_,. _;t_
su bst it nt ed.

Tim followinl_ changes were made in the fil_ interface m,.I,iI,,s:

Direct access opens- Thediroct access and rocnrdl_,,glh sl,ocitications w,.ro r_'lm,v,,d fr, ml th_,,,l,,,,
st;llOlllOll|S ill ol?a._cl, oll'asc l. and olt'unc_ _.

31

-_'-_i4-_-_"- _ "_+"___+_--.".+Y--

Block size speeillcations--The block size specifications were removed from the open statements in
oRascl and o Wascl.

Rapid file positioning--The calls tofizedLen and fSsec from fSunc_ were removed, making it always
call fSgen; fizedLen, fSsec, and nRecs were eliminated.

The following changes were made in the GetData main program and the routines specific
to GetData:

Command line processing--The call to $CheckArgs in the GetData main program was removed.

Performance testing code---The calls to OSSReadCpuTimer and $SwitchVar were removed from

copyL The associated variables and code were ,also removed.

Default format--The default format was changed from crop2 to unc2 in routine p Write.

3.6.2 UNIX Conversion-- This section describes conversion of the code to run on an IRIS

(Sihcon Graphics, Mountain View, California)workstation using the f77 compiler running under ATT

UNIX Version V (AT&T Bell Laboratories, New York). Most of the conversion should also apply to

other UNIX systems. In a few places,the converted code callsUNIX system functions. The detailsof

how to c_ll UNIX system functions from FORTRAN vary from system to system. None of the system

callsare criticalto the basic function of GetData; they can be omitted ifthey are hard to callon your
system.

The following changes were made throughout the code:

include syntax--The syntax of all include statements was changed to

$ include whatever, co,,

as accepted by the UNIX compiler.

Unit numbers--The unit numbers for terminal input and output were changed to 0.

implicit none--All implicit none statements were rem_)ved.

readOnly parameter--The neadOnlg parameter was removed from several open statements.
know of no equivalent substitute.

The following changes were made in the nem.f file:

booboo routine--The calls to ELXSI intrinsics were removed from the code in booboo. We <t_ i.,l
know of any appropriate substitutes.

clock routin+.--'l'he calls to date and time were removed from the clock subroutine. Illallk strilt_

are returned. IrNIX does provide functions to get appropriate strings, but it was too mu<'h w<)rk

to tiguro out how 1o use them from FORTRAN on the IRIS.

String functions--The "commented out" machine-independent versions of the code were used in

r<,ulin_s lo('asr, up('ase, and ,qtrEq. UNIX provides system calls for the up('asf and b,('as_

fumtions, but the complications of using them from FORTRAN probably make them less efli<'i+,nl
lhan the machine independent versions.

32

I It#

s_IsEr'r routine----Subroutine sysErr was changed to call the perror system function.

The following changes were made in the getCmd.f file:

File kind intrinsicsMThe calls in inCmd to ELXSI intrinsics were removed, and echo was hardwired

to false. Equivalent capability probably exists under UNIX, but we did not investigate it.

doSys routine---The body of doSys was replaced with a call to the UNIX System function.

doHelp routine--The body of the doHelp routine was removed, and code to print a warning message
was substituted.

The following changes were made in the file interface modules:

Direct access opens--The direct access and record length specifications were removed from the opeT_
statements in oRascl, oWascl, and oWunc2.

Block size specifications--The block size specifications were removed from the open statements in
oRascl and oWascl.

Rapid file positioningMThe calls tofizedLen and fSsec were removed fr3m fSunc2, rcaking it always
call fSgert; fixedLen, fSsec, and nRecs were completely ehminated.

The following changes were made in the GetData main program and the routines specific to G_tData:

Command line processing_The call to $CheckAros in the GetData main program was removed.

Performance testing code----The calls to OSSReadCpuTirner and $SwitchVar were removed from
copyl. The associated variables and code were also removed.

Default format_ The default format was changed from crop2 to unc2 in routine p Write.

k

33

Appendix A--Help Files

This appendix consists of listings of the help files installed on the Ames-Dryden ELxsi computer. Some

of the details are specific to this installation of the program and would not apply to other sites.

For instance, there are numerous references to specific file path names in/user�maine. The sample

subroutines mentioned in some of these help files are listed in appendix B. The samples of file formats

are listed in section 3.4.

A.1 Program Help File

getData [cmd] -- select time history data times and signals

USAGE

[luserlmai.'le Icommands I] getData

DESCRIPTION

This program selects signals and time intervals from time history

data files. It can also be used to copy time history data files to

different file formats. The program is desired for interactive

USe.

The program can apply time skews, interpolating data to the output

times using either linear interpolation or hold-last-value

algorittuas. Input can be merged from multiple asynchronous files.

There is also provision for calculated parameters, defined by

user-supplied subroutines. Calculations consisting of simple

linear combinations of sig1_als can be defined interactively _ithout

writing Fortran code.

The program resides in the directory /user/maina/ge*Data/commands,

with an alias in /user/maine/commands. The useNaine command

facilitates access to getData.

There is a full internal help facility, which covers the commands

within getData.

EXAMPLES

/user/maine/commands/useMaine

getData

read infile

signals

alphaffialphaf betasbetaf &

p=x12345

write outfile unc2

copy times 7:30:15:000 - 7:31:0:000 dt-.1

quit

I
|

k

34

getData

read infile

signals +all

write outfile

copy

quit

CAVEATS

The order of the read, signals, write, and copy commands is

important. They should be in this order.

ERROR HANDLING

The program attempts to recover from all errors. Such mundane

errors as exceeding dimension limits, or giving names of

non-existant files or signals are all caught. The program should

nor crash, regardless of what junk you feed it for commands.

Infinite or NaN quantities in the data may crash it. If you

succeed in crashing the program in any other way, please let me
know.

SEE ALSO

bindGetData, fileInterface, uncl, unc2,

internal help
cmp2, useNaine,

IMPLEMENTATION

Fortran program.

The time history data file interface routines are used to read and

write the data files. See the help topic filelnterface for

discussions of the file interface subroutines. You must write

customized versions of these routines to use getData on data files

not supported by the standard ones.

KEYWORDS

GetData, select signals/intervals for time history data files,

time skews/incerpolation/thinning/(sample rates/intervals)

AUTHOR Richard Maine - NASA Dryden
VERSION 3.3.1

DATE 3 Sept 86

3.5

A.2 Command Help Files

A.2.1 Copy Cornmand--

copy [cmd3 -- copy data from input to output file

USAGE

copy

time[s] : hh:mm:ss:mmm - hh:mm:ss:mmm

dt=<dt> thin=<thin> nTimes=<nTimos>

PARAMETERS

time

Time interval to be copied. The default time interval is 0-24

hours. If time is specified, all 8 time fields are required,

even if they axe 0. The time fields can be delimited by blanks,

colons, dashes, slashes, or periods. Note that the last field of

time is milliseconds, rather than decimal seconds, regardless of

the delimiter used; thus 12:00:00.5 represents 5 milliseconds

past noon - not half a second.

dt

Output sample interval. If a non-zero dt is specified, the

output times will be at intervals of exactly (%o floatting point

precision) dr. If all input files drop out for a period of

longer than I second, the corresponding times will be dropped out

of the output file and a message will be printed. If dt is 0 or

is unspecified, the output times rill be determined by the thin

• parameter. It is illegal to specify both dt and thin.

thin

Thinning factor for output. If thin is specified, the output

times will exactly equal the input times of the first file

specifiqd on the most recent read comm_nd, thinned by the

specified factor. The input file skew is included in this

calculation. The default for thin is I, which results in no

thinning. It is illegal to specify both dt and thin.

nTimes

Naximum number of time points to write. If nTimes is non-zero,

the copy operation will stop after that number of output times

are written (or at the requested end time, whichever comes

first). This is an easy way to look at the first fQ_ time points

on a file. Anything beginning with nt is accepted as _n

abbreviation. If nTimes is O, it is ignored. The default is O.

;]6

DESCRIPTION

This command requests that a rime interval be copied. The input

and output data files, and the signals must have been previously

specified. For multiple time intervals, use multiple copy
commands.

All input data will be interpolated to the output times using

either linear interpolation or hold-last-value as specified by the
me_hods command.

EXAMPLES

copy

copy rimes 7:30:15:000 - 7:31:0:000 dt=.1

copy times=7 30 15 0 7 31 0 0 thin=2
copy nTimes=5

CAVEATS

For most applications, the time segments should be in order of

increasing rime and should not overlap. Many programs can not deal

well with files ha_ing unordered rimes. Future versions of getData
may disallow writing such files.

ERROR HANDLING

There will be an error message whenever the times from an input

file are out of order or when out-of-order times are written to the
output file.

SEE ALSO

read, signals, write, show, skew, methods

KEYWORDS

copy command,

copy data,

set/specify/select time/(sampl_ interval/rate)/dt/
(thinning factor)/nTimes

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.2

DATE 17 Nov 86

37

®

Do Command--

do rcmd] -- execute a command ftle

USAGE

do <command_file_name>

DESCRIPTIOM

the do command causes the program to begin taking command lines

from a text file. The file can contain any command that could be

entered from the terminal, ezcept for nested do commands (which are

disallowed to avoid possible recursion problems). Following

execution of all commands in the file, control returns to the

terminal (unless the command file included a quit or other command

that terminates the program). Command files are appropriate for

regularly-used long command lines or series of command lines.

Note that only the actual command lines are obtained from the

command file. Any other inpu_ required for the commands is still

obtained from the terminal.

The following details of command line entry also apply to commands

entered directly from the terminal, but are particularly useful in

command files. To continue any command to another line, end the

first line with an ampersand (,). Commands can be continued in

this way to any number of lines, limited only by the %oral command

length limit of 4096 characters. The end-of-line counts as a blank

for command parsing purposes. A comment is indicated by beginning

%he command with two dashes (-). A completely blank command is

also a legitimate comment. Comments are not allowed between lines

of a continued command.

EXAMPLES

do latr.fit

do /user/maine/someFile

ERROR HANDLING

If the specified command file can not be read (usually because you

gave the wrong name), an error number is printed and control

returns to the user. The "sys files" command can be useful in this

situation to verify the file name.

SEEALSO
sys

IMPLEMENTATION

Internal command within the getCmd subroutine.

KEYWORDS

do/execute a command file,

command line form/syntax, continuation lines, comment lines

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1

DATE 1/23/85

39

• -. IId

A.2.3

help [cmd]

USAGE

help [<command.name>]

DESCRIPTION

Gets help on commands in this program. This version of help

is set up to look only for help on this program. It also

accepts all arguments described in the syetlmhelpfile (do

"sys help help").

TO GET A LIST OF THE AVAILABLE COMMANDS,

DO "HELP COMMANDS".

Some proErams also have helpFiles for variables or topics,

which you can find with "help variables" or "help topics".

EXAMPLES

help quit

SEE ALSO

sys, sys help help

IMPLEMENTATION

Calls the system help utility, with the search rule set for

this program.

KEYWOKDS

help command

AUTHOK Richard Maine - NASA Dryden
VEKSION I.I

DATE 1/22/85

4O

'_. ba

A.2.4 Method Command--

method [cmd] -- define interpolation methods

USAGE

method inSigl=methl inSig2=meth2 ...

PARAMETERS

inSig?

Name of an input or filtered parameter.

meth?

Interpolation method for the specified input signal. Allowable

interpolation methods are hold (meaning hold-last-value) and

interpolate (meaning linear interpolation). Anything beginning

with h or i will be accepted as an abbreviation.

DESCRIPTION

This command specifies the methods to be used for interpolating

signals to common output times. This command overrides, on a

signal-by-signal basis, the default interpolation method for each

file specified in the read command. Any signal not mentioned in a

method command uses the default interpolation method specified in

the read command; if the read command did not specify the method

either, hold-last-value interpolation is used.

The interpolation method is applicable only to input or filtered

signals. Calculated functions and output parameters are always

evaluated with the interpolated data at the output times.

All method data is discarded whenever a read command is executed.

Any applicable methods must be re-entered, even if they are the

same as those in effect for the previous files.

Anything begining with meth will be accepted as a synonym for the
method command.

EXAMPLES

meth alptta=h beta=interp

p=hold-last-value

41

F

p" ,

CAVEATS

Hold-last-value interpolation is far more efficient than linear

interpolation. For input files that hate no active signals _ith

skews or linear interpolation, the proEr m uses a special-case

fast algorithm. As ,oon as an input file has a single active

signal ske. or linear interpolation, the special algorithm no

lonEer applies for that file and the performance becomes
substantially worse.

Linear interpolation is meaningless for parameters such as digital

words. The program has no idea ghich parameters are in this

category; it gill obediantly trash such parameters if you ask it
tO.

ERKOR HANDLING

Methods not beginning with h or i will cause an error message,

leaving the previous method specification (if any) unchanged.

SEE ALSO

read, skew, shog, copy

KEYWORDS

method/meth command,

specify/set/select/define/change interpolation/synchronization/syncmethods

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1

DATE 29 Jun 87

42

A.2.5 Quit Command--

quit [cmd] -- exit the program normally

USAGE

quiz

DESCRIPTION

Terminates the program and returns to the operating system.

SEE ALSO

sy_

KEYWORDS

quit command,

quit/exit/terminate the program

AUTHOR Richard Maine - NASA Dryden
VERSION I.I

DATE 1/23/85

L_

43

A.2.6 Read Command--

read [cmd] -- specify input data file(s)

USAGE

read fileName

fSkew=<file_sksw>

+hold

PARAMETERS

fileName

Name of the input file. This is a required parameter.

fSkew

Time skew to be added to all times on this file, in seconds.

This skew is independent of the individual signal skews. If

signal skews are specified, they are in addition to the file

skew. If all signals in a file are to be skewed by the same

amount, it is FAR more efficient to specify this as a file skew

than to specify all the individual signal skews with the skew

command. The file skew may be arbitrarily large and has no

impact on efficiency. The default is O.

+hold(-interpolate)

Default interpolation method for signals in this file.

Hold-last-value interpolation is specified by +hold; linear

interpolation is specified by +interpolate. This defaul_ can be

overridden on a signal-by-signal basis using the method command.

If unspecified, the default i8 +hold.

DESCRIPTION

This command specifies the data files to be read. It also

specifies some details about how the files will be processed.

The read command does not actually read any data from the files; it

just opens the files and prepares them for reading. The actual

data must subsequently be read using the copy command.

Each execution of the read command first closes all previously open

input files. To merge data from multiple input files, you must

specify them as a list of files in a single read command. The list

syntax requires you to specify the name of the each file, followed

by all parameters relevant to the that file. A comma indicates the

end of the specifications relating to each file.

44

Anypreviously-defined output signal definitions remain unchanged

when a read command is executed. The program will relink the

output signals to the available inputs on the nev input files. Any

previously open output data file remains open. This allows

convenient splicing of time segments from multiple input files onto

a single output file. A typical command sequence to do such

splicing would be:

-- copy relevant times from the first input file.
read filel

signals +all

write outFile

copy time I:0:0:0-2:0:0:0

-- copy data from second input file to same output file.
read file2

copy time 2:0:0:0-3:0:0:0

All previous information about skews and interpolation methods is

discarded when a read command is exe.uted. These data must

therefore be respecifled even if they are the same as for the
previous file(s).

EXAMPLES

read datafile

read file! fSke,=.OS, file2 fSke,--.02, file3

ERROR HANDLING

Any errors in parsing the command or opening the files will cause
all the input files to be closed.

If any signals needed for computing the currently-defined output

signals are missing, an error message will be printed and the

corresponding output signals will be set to O.

SEE ALSO

signals, write, copy, show, sys files

KEYWORDS

read command,

specify/set/select input data file

names/skews/(syncronization/interpolation methods)

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1

DATE 3 Sept 86

A.2.7 Show Command--

shog/list [cmd] -- list sisal names

USAGE

show

or

list

DESCRIPTION

Shows the currently-defined input, calculated and output signal

names. CalculaZed signals that require unavailable inpuZs are

shown in peLrens. Show and list are synon_s.

EXAMPLES

show

CAVEATS

_"ne list tends to be long and scroll off ¢he screen. Use "S/'Q to

pause and reszarZ it. There is no way to aborZ Zhe list short of

aborting Zhe program. Probably ought to provide parameters zo ask

for specific portions of Zhe data. l"ais command will probably be

expended in zhe relatively near fuZure, possibly before production
release.

SEE ALSO

signals

KEYWORDS

show/list command.

show/list selected input and outpuZ signal names

AUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

DATE 27 Aug 86

46

signals [cmd] -- define signals to be written

USAGE

signals [+all[+add[+delete] outSig1[-exprl] outSig2[=expr2] ...

PAKAMETEKS

At most one nf the switches +all, +add, or +delete may be specified

in a single signals command. Furthermore, this specification must

be the first argument of the command or it will not be recognized.

If none of these switches is specified, the specified signals

completely replace any previous list.

+all

If +all is specified, the output signal list will be set to

consist of all currently available signals. There is no

computation or renaming of signals. Any subsequent arguments

will be ignored if +all is specified.

+add

If +add is specified, the specified signals are added to the list

established by previous sig,lals commands.

+delete

If +del is specified, the specified signals are deleted from the

list established by previous signals commands. Anything begining

wit _ ÷del is accepted as an abbreviation. If +delete is

specified, the expreusions in the signal list are irrelevant.

outSig?

Each outSig parameter defines the name of a signal to be written.

Signal names must not contain commas, equal signs, quotes (single

or double), parentheses, or embedded or leading blanks. It will

probably simplify your life if you also avoid the characters '+'

and '-' and if you stair each variable name with a letter, but

these suggestions are not enforced. Signal names are limited to

16 characters. The outSig names can not be quoted.

expr?

The expr parameters are expressions defining the computation of

the output signals. Expressions can consist of up to 5 terms in
the forms:

<sign><constant>

<sign><signal-name>

<sign><constant>*<signal-name>
where

<sign> is ÷ or - (may be omitted from first term)

<constant> is an unsigned real constant with no exponent

<signal-name) is the name of an input or calculated signal.

(This includes only calculations defined by calculated

function subroutines, not calculations defined by the signals

command). Signal names follow the same rules as for output

signals. Signal names may be enclosed in quotes (either

single or double quotes, but they must match). If a signal

name contains '+, or '-' characters, or if it starts with a

digit or dot, then it must be enclosed in quotes.

If the expression is omitted, the output signal is assumed to be

equal to an input or calculated signal of the same name (enclosed
in quotes).

DESCRIPTION

This command defines the names of the signals to be written and how

they are to be computed. The computations allowed include

selection or renaming of an input signal, plus simple linear

combinations of input signals. In this context, input signals

include those obtained from filters or calculated functions.

Anything begining with sig will be accepted as an abbreviation for
the signals command.

At least one signals command must precede the first write command.

You should not normally use the signals command while an output

file is open. The signal names on an output file are determined by

the signal selection effective at the time the write command for

that file is issued. Any subsequent signals commands will splice

different signals onto the same channels of the output file; this

has subtle implications and is appropriate only for special

applications. A warning message will be issusd if you attempt
this.

EXAMPLES

signals +all

sigs +add p q r

signals +del alpha q-bar

signals &

alpha-c="alpha-f"-3.125,q tapS="OOS"R

q-bar=x12345 deAvg'.5*"de-left"+.S,"ds-right,,

4_

CAVEATS

The expression parser is quite crude; do not be confused by its

similarity to Fortran syntax. It can not handle any forms other

than those listed. For instance, the multiplying constant must

always precede the signal name instead of following it. Exponent

form (e.g. 1.e-3) is not accepted for constants. Parentheses are

not recognized. There can be no blanks in an expression, except

around the equals sign.

The parser does not strictly enforce the rules for signal name

syntax in all contexts. You can sometimes get by with expressions

not meeting the stated syntax rules. For instance 1,3 is

interpreted as a constant I times a signal named 3, even though the

3 is not quoted. Such expressions are confusing and are not

guaranteed to work with future parsers. I advise avoiding them.

The only optimization of the expressions is a special case for

expressions consisting of a single signal name with the multiplying

constant omitted or equal to +1.0. (The large majority of

expressions have this form). Expressions such as 2+2 will work,

but _he addition will be repeated every time point, which is a

horrible waste of computer time.

BUGS

The signal name 1.0 is reserved for internal use. If you have an

input signal with this name, references to that input signal will
not give the correct results.

The program does not currently detect the occurance of multiple

output signals of the same name, but files with such duplicate

names may cause difficulties in your future life. If there are

multiple input signals _ith the same name, there is no way to

specify which one you want; the result is not guaranteed to be

repeatable.

ERROR HANDLING

Ill-formed expressions will be give an error message and substitute

a blank expression, which will give the value O.

If any of the signals used in the computation of an expression is

unavailable, an error message will be printed and the value 0 will

be used for that signal. Although currently inactive, the

expression will be remembered and may become valid after a

subsequent read command.

SEE ALSO

read, write, show, copy

KEYWORDS

signale/sigs command,

specify/set/select/define/change/rename siEnal/channe I names

and computations/calculations

AUTHOR Richard Naine - NASA Drydan
VERSION 3.1.1

DATE 20 Nov 86

50

l!

I •

!

A.2.9 Skew Cornmand_

skew [cmd] -- define input signal skews

USAGE

skew inSigl=skewl inSig2-skew2 ...

PARAMETERS

inSig?

Name of an input or filtered parameter.

skew?

Time skew for the specified input signal, in seconds. This

skew is added to the time tag of the measurement. Thus a

positive skew value adds lag to the signal (possibly to

compensate for a lead in the raw data). This skew is in

addition to any file skew specified in the read command.

DESCRIPTION

This command specifies the signal skews to be added to the time
tags of the input signals.

Note that skews can not be applied to calculated _unctions or

output parameters. Calculated functions and output parameters are

always evaluated with the skewed input data; thus calculated

functions can be indirectly skewed by skewing all of their input
signals.

The output data is always written in frames of datz interpolated to

common times. This interpolation is done either by linear

interpolation or hold-last-value, as specified by the method

command. Note that a skew smaller than the sample interval can

sometimes have no net effect on the output for signals using
hold-last-value interpolation.

All skew data is discarded whenever a read command is executed.

Any applicable skews must be re-entered, even if they are the same
as those in effect for the previous files.

Anything begining with skew will be accepted as a synonym for the
skew command.

EXAMPLES

skew alpha=.04

p=.O1
beta=-.03 &

CAVEATS

There are significant pezformance penalties for processing skews,

and these penalties become larger as the skov becomes larger. For

input eiles that have no active signals with skews or linear

interpolation, the program uses a special-case fast algorithm. As

soon as an input file has a single active signal skew o-. linear

interpolation, the special algorithm no longer applies for that

file and the performance becomes substantially worse.

There are also limits to %he magnitudes of signal skew that can be

applied. These limits are functions of several factors and can be

increased if needed (but this will cause further performance

deEradation). There ,ill be a ,amin E message if you exceed the

limits.

These limits do not apply to the file skews specified in the read

command. The file skews can be arbitrarily large and have no

performance implications. Thus, if the same skew is %0 be applied

to all signals in a file, it is far more sfficient %0 specify it as

a file skew than as individual signal skews.

It is easy to get the sign of the skew wrong. If you want to

skew the data to correct for a lag in the sensor, you must

specify a negative skew.

EKKOK HANDLING

Ill-formatted skew values will cause an error message, leaving the

previous skew (0 if never specified) unchanged.

SEE ALSO

read, me%hod, 3how, copy

KEYWORDS

skew command,

specify/set/select/define/change signal/channel time skews

AUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

DATE 29 Jun 87

,52

9

A.2.10 Sys Command--

sys [cmd] -- execute a system command without exiting program

USAGE

sys <system_command_line>

DESCRIPTION

Sys allows the execution of any system command line from within the

program. The command line need not be quoted. Common uses include

the system files and to commands. The synonym system (or anything

else beginning with sys) is accepted.

EXAMPLES

sys files

sys to monty "I am busy now"

ERROR HANDLING

If the command fails, any error messages will be printed and

control will be returned to the program.

IMPLEMENTATION

Calls $Shell, with appropriate error handling.

KEYWORDS

run a system command, sys command

AUTHOR Richard Maine - NASA Dryden

VERSION 1.1

DATE 1/23/85

,5:3

A.2.11 Write Command---

write [cmd] -- specify output data file name

USAGE

write [filename] [format]

PARAMETERS

fileName

Name of the file to be written. If no name is supplied, the

previous output file will be closed without yet opening a new
one.

format

File format to be used. Currently accepted values are unc2,

cmp2, ascl, and lisl. If omitted it defaults to cmp2.

DESCRIPTION

This command specifies the data file to be written. It closes any

previously open output data file and opens a new file with the

specified name and format.

The write command does not actually write any data to the output

file; it just opens the file and prepares it for writing, lq_e

actual data must subsequently be written using the copy command.

The signals to be written must have been specified before executing

the write command. Any subsequent execution of a signals command

will sp]ice different signals onto the same channels of the output

file; this is appropriate only for special applications.

The interpretation of the format parameter depends on the write

routines. It is possible for the write routines to ignore this

parameter or change its interpretation. With the default write

routines, the possible values are:

unc2: uncompressed 2 format.

cmp2: compressed 2 format.

asc1: ascii I format. (primarily for tape transfer to other

machines).

list: listing format. (for creen or printer listings only;

no read routines for this format are supported).

54

%
#

Note that you can list directly to the terminal screen by

specifying $stdout (Elxsi-specific) as the filename. The resultin E

display, however, will not stop at the end of each screenful; you

must use -S/'Q to start and stop the display if desired. Only ascl

and lisl formats will work to the screen (the others are binary

formats); the lisl format is more readable.

EXAMPLES

write dataFile

write dataFile uric2

write $stdout lisl

CAVEATS

the signals command must have been executed prior to the write

command in order to specify the signal names to be written.

ERROR HANDLING

If no output signals are defined, or if any errors in parsing or

execution occur, the output file will be closed.

SEE ALSO

read, signals, copy, show, sys files

KEYWORDS

write command,

specify�set�select�close output data file name

AUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

DATE 3 Sept 86

A.3 Topic Help Files

A.3.1 Calculations--

calculations [topic] -- calculated functions in getData

DESCRIPTION

This helpFile gives an overview of calculated functions in

getData.

There are 3 different means of defining calculated functions

in getData: the signals command, the calculated function

subroutines, and the filter subroutines.

The signals command allows you to define some simple

calculations interactively, without writing Fortran code. You

can interactively define calculations that are simple linear

combinations of input signals. This includes such common

functions as averages, differences, sign changes, plus general

bias and scale factor corrections.

These calculations can use input file signals, filtered

signals, or calculated function signals. A calculation

defined in the signals command can not use another calculation

defined in the signals command. These calculations are

performed immediately before writing each output record; they

have no intrinsic sample rates. The input signals used in the

calculations are all skewed and interpolated to the output

times before the calculations are performed. For details, see

the helpFile for the signals command.

Calculations more complicated than supported in the signals

command must be implemented by Fortran subroutines. Up to 5

independent calculated function modules can be simultaneously

installed (this number can be easily increased if needed). The

calculated function modules are called CFI to CF5. Each

calculated function module normally implements multiple
calculated functions.

Each calculated function module can use signals from the input

files, the filter module, and lower-numbered calculated

function modules. It can not use signals from higher-numbered

calculated function modules or signals defined in the signals

command. The calculations are performed immediately before

writing each output record; they have no intrinsic sample

rates. The input signals used in the calculations are all

skewed and interpolated to the output times before the

calculations are performed.

Each calculated function module is defined by a set of 3 Fortran

subroutines, called allocateCFx, acti_ateCFx and doCFx, where

the x is replaced by the calculated function module number

(I-5). For details, see the helpFiles fol these routines. (The

helpfile names do not include the x suffixes).

Filters can not be conveniently implemented in the normal

calculated function modules because digital filters are

inherently linked to specific sample rates, whereas the normal

calculated function modules do not have inherent sample rates

and may be called at different rates, depending on the requested

output. Therefore, separate provision is made for filtered

signal computations. Only a sinEle set of filter routines is

currently allowed; this set of routines can support multiple

filters.

The filters can use only signals directly from an input file.

Other calculated functions can not be filtered (though they

can use filtered inputs, which normally achieves about the

same effect). The input signals used for the filter are raw,

without skew corrections or interpolation. The filtered

result may be skewed and interpolated in the same way as

signals read from the input files. (Normally, you would

expect to use a different skew for the filtered signal than

for the raw signal anyway).

The filter interface conveniently allows only recursive causal

filter forms; i.e., the filters can depend only on prior and

current data, not on future data. There is no easy way to run

forward/backward filters or smoothers. Rote that you can skew

the filtered result to approximately compensate for the group

delay of the filter.

The filters are defined by the subroutines allocateFilt,

activateFilt, reMapFilt, and doFilt. For d_tails, see the

helpFile_ for these routines.

USAGE

The interactively-defined calculated functions are defined and

accessed through the signals command.

The calculated functions defined by calculated function modules

or the filter module are accessed interactively by signal name

in the same manner as the input signals. The only difference is

that you can not specify skews or interpolation methods for

signals defined by calculated function subroutines; the

calculations are done after all skews are applied. You can

specify skews and interpolation methods for filtered parameters.

EXAMPLES

See the signals helpFile for ex_aples of inXeracttvely defined
calculations.

Source for a sample set of calculated function subroutines is

in the files sample.CFl.f and s_le.CFl.con in the

/user/maine/getData.3.1/source directory.

Source for a sample set of filter subroutines is in the files

sample.filt.f and sample.lilt.con in the

/user/maine/getData.3.1/source directory.

CAVEATS

The interface to the filter module i8 not as "clean" as I would

like it to be. Unfortunately, performance requirements forced

some compromises here. If I got some bettor ideas, this

interface might change further in the future. The interface to

the calculated function modules is much more "solid. '°Luckily,

there seem to be only a fee users of the filter module.

SEE ALSO

signals [cmd]

allocateCF,activateCF,doCf [sub]

allocateFilt,ac_ivateFilt,reNapFilt,doFilt [sub]

KEYWORDS

calculations topic,

(calculated function)/filter subroutines

AUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

DATE 8 Sept 86

5_

A.3.2 CPUTime---

cpuTime [topic] -- cpu time estimates for getData on Elxsi

DESCKIPTION

This helpFile gives cpu time estimates for getData.3.1.1

running on an Elxsi 6400.

Unless otherwise specified, data are based on tests with

optimized cmp2 format read/write routines and with optimized

doCopy routines in getData. There is relatively little

difference between cmp2 and unc2 format times in most cases.

All times are quoted per frame (time point). Times do not

include setup overhead that is not repeated each frame.

Overhead costs -

Overhead Costs.

.2 ms, gith major parts as follows:

syncTo: .05 ms

doCalcs: .03 ms

mapOut: .02 ms

nextT: .03 ms

................... Input file positioning costs

For cmp2 format input files, there is a significant cost for

positioning input files to the begining of the interval to be

processed. This cost is

.25 ms per time point skipped, plus

2 us per compressed data value skipped.

You can estimate the number of compressed data values in a

file as about one third of the file size in bytes. Then

multiply this by the fraction of the file you are skipping
over.

The file positioning cost for unc2 format files is negligable.

I have not measured it for ascl format files, but it will be

very large.

............................. Input costs

For each input file, there is an initial cost of
.6 ms

For each signal on an input file, whether used or not, add
9 us

This figure may vary from around 5 to 15 us ,ith cmp2 files,

depending on the compression. The fastest readlng is from

highly compressed files. The figure quoted is a typical
average.

If the input file is ascl format, add

.15 ms per signal + .4 ms per line

(3 signals on the first line, 4 on subsequent lines.)

For each signal used, independent of the format, add an

additional

6 us

Output costs

There is an initial cost of

.6 ms

For each signal written, add

8 us

This figure may vary from around 5 to 15 us with c_p2 files,

depending on the compression. The fastest ,tiring is to

highly compressed files. The figure quoted is a typical

average.

If the output file is ascl format, add

.15 ms per signal + .5 ms per line

(3 signals on the first line, 4 on subsequent lines.)

If the output file is lisl format, add

.25 ms per signal + .4 ms per line

(5 signals on each line)

Processing costs

For each signal used, also add

6 us, divided as follows

syncTo: 4 us

mapOut: 2 us

Depending on precisely how the signal is used, some of

these components may not apply.

If ANY used signal on an input file has a non-zero skew or

uses meth=interp, then add

25 us for every used signal on that file.

For each used signal with meth=interp, add

5 us

For each skewed signal, add

11 us per time point or fraction of a time point of skew

For each output calculation term specified in the signals

command, add

_0

10 us

This need not be added for the first term of each signal,

provided that term has no multiplier. Examples:

outsig=insig (add nothing)

outsig=2_insig (add 10 us)

outsig=insig+3 (add 10 us)

outsig=.5_insigl+.5_insig2 (add 20 us)

I have not done time testing for calculated function routines.

.......................... Filter costs

Filter costs, of course, depend heavily on the specific filter

implementation. The following estimates are for a typical

filter consisting of a 3rd order lowpass plus a notch. The

figures are based on tests with the optimizer used on the

filter routines.

For having the filter routines installed in the program,

whether used or not, add

40 us for each input file that has filters defined

For each filter used, add

50 us

A filter does not count as a signal read from an input file;

however, the unfiltered signal must be read from the input

file in order to be filtered. The input times for the needed

unfiltered signals must therefore be included. The program

implementation also forces both the filtered and unfiltered

signal to be processed by syncTo, even though the unfiltered

signal might not really need this processing.

An indirect cost of filtering is that filtered signals usually

compress very poorly. Poor compression can increase the time

required for output (in addition to the rather obvious

increase in the file size).

EXAMPLES

Read 4 signals from a cmp2 format file having 685 signals.

Write in cmp2 format. No skewing or interpolation. Copy all
16015 times from the file.

overhead .2 ms

_nput .6 ms + 685,9 us = 6.8 ms

output .6 ms + 4_8 us = .6 ms

processing 4.6 us = .0 ms

total 7.6 ms * 16015 frames = 122 sec

Note that _ho large majority of _ho time of this example is

from the large number of unused signals in the input file.

CAVEATS

Times will vary somewhat as a function of the data, system

load and other factors not considered in the tests. The

estimates can not be trusted to better than about I0-20_; some

cases may vary more.

Any extrapolation of these estJJnates to other machines is at
your own risk.

KEYWORDS

cpuTime topic,

estimating cpu time for getData

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1

DATE 19 Sept 86

!,,

A.3.3 FileInterFace--

fileInterface [topic] -- time history file interface routines

DESCRIPTION

This helpfile describe& the time history file interface

modules. The time history file interface modules are mean_ to

provide comparable access to a variety of data file formats.

These modules are particularly oriented around flight time

history data files. A program using these interface modules

can be modified to read or write different file formats by

merely rebinding with different interface modules. No program

changes are required. The use of these interface modules thus

avoids the necessity to modify each program to access special

file types. A single specialized interface module can serve

for all programs designed to use these modules.

You can often get by without even rebinding, because there is

a file read module that automatically recognizes and reads

several fo1_ats, plus a file write module that will write in

any of these same formats.

Currently supported formats include:

uncl - uncompressed I format. A simple format similar to

"mmle" format as used on the CDC. Used mostly for

compatability and for areas where simplicity of format

is an overriding factor. Support for this format is

limited and available only by binding in a special set

of read and write routines.

unc2 - uncompressed 2 format. An improvement on uncl format,

which adds header information including signal names.

Fully supported.

cmp2 - compressed 2 format. A format using data compression.

The usual choice for large files. Fully supported.

Elxsi-specific.

ascl - ascii I format. Used mostly for tape transfer to other

systems. This format is inefficient both in file size

and access time. It is not recommended for internal

Elxsi use. Fully supported.

lisl - listing I format. Used only for screen and printer

listings. Fully supported for writin E. No read

routines are supported for this format. The exact

details of the format are subject to change.

E"

63

USAGE

The sequence of subroutine calls to write a file using the

time history file interface routines is as follows:

openW - to open the file for ,riting.

fWrite...fWrite - called repeatedly to write records.

closeW - to closs the file.

The sequence of calls to read a file using the interface
routines is:

openR - to open the file for reading.

rSigs (optional) - to find names of the available signals.

sigsR or chansR (optional) - to specify the signal names or

channel numbers to be read.

rewR (optional) - to position the file at the first record.

fSeek (optional) - to position the file after a requested

time and read a record.

fRead - to read the next record on the file.

closer - to close the file. (Can usually be safely omitted,

but is recommended).

The subroutines between openR and closer can all be called any

number of tlmes and in any order, except for rSigs. Some

versions may not perform as expected if rSigs is called after

any calls to fRead or fSeek.

LIBRARY

Jobs using a particular set of file in_erface routines must

bind in the object file containing the appropriate routines.

In addition, most of the interface libraries use subroutines

in /user/maine/lib/misc.lib.o.

The interface subroutines are in the directories

/user/maine/fRead and /user/maine/fWrite. The supported

fWrite object file is /user/maine/fWrite/auto.o. The

supported fRead object file is /user/maine/fRead/auto.o.

Source, but not object, code for some simpler, more portable
versions is also maintained.

CAVEATS

Most of the routines have dimension limits on the number of

allowable channels on a file. Typical current dimensions

allow up to 1000 channels per file. This can be easily

changed if required.

64

The routines are not set up conveniently to be called from

proErams compiled with the +double switch. All floattin E

point quantities are 64-bit precision, but integers and

logicals are only 32 bits. If you call these routines from

programs compiled with +double, you must explicitly declare

any integer or logical quantities used as arguments to be

integer*4 or logical*4.

SEE ALSO

particular subroutines and file formats

SUBROUTINES

A full set of read acc6ss routines includes:

openR,closeR,_Sigs,sigsR,chansR,rewR,fRead, and fSeek.

A full set of write access routines includes:

openW,closeW,fWrite

KEYWORDS

time history data file read/write/access/interface

subroutines/routines,

openW,closeW,fWrite,

openR,closeR,rSi_s,sigsR,chansR,rewR,fRead,fSeek

AUTHOR Richard Maine - NASA Dryden

VERSION 2.1

DATE 12/27/85

A.3.4 Version--

version [topic] -- version 3.1 changes to getData

DESCRIPTION

GetData version 3.1 is now r@loasod. This is a major rewrite

of getData to add new capabilities, with large portions of the

program rewritten from scratch.

Everything relating to this version currently lives in the

directory /user/maine/getData.3.1. To access version 3.1, use

the command "/user/maine/commands/getData". To access the

bind shellfile for version 3.1, use the command

"/user/maine/commands/bindGetData".

USAGE CHANGES/INCOMPATABILITIES

As long as you are no_ using the new capabilities, the general

usage of the program is quite similar to that of the previous

version. There are some changes in detail, outlined in the

following. See the internal helpFiles for precise details.

The change that will most immQdiately affect everyone is in

the default for the signals command. In the prior version,

the output signals defaulted to all the signals available from

the first read command, which was often convenie;,t but

occasionally awkward for read commands after the first. In

version 3.1, there are no output signals selected by default.

This means that a signals command is new mandatory. The

command 'signals +all' will duplicate the effects of the

default in the previous version.

The ability to specify expressiox,s for output signals means

that some signal names now cause ambiguity in some contexts.

In particular, signal names bogining with a digit and signal

names contair, ing "-" characters can cause problems; _here are

numerous existing files with such signal names. You must

quote any such ambiguous signal names appearing on the right

side of the equals sign in the signals statement. If you do

not have any equals signs in the signals statement (i.e. if

you do not use it to rename signals), this change does not

affect you. See the signals hslpFile for details.

Multiple files specified on a single read command must now be

separated by commas. Previously, blanks or commas were

acceptable. This ch_,D& is to a_lo_ for -ome extra optional

syntax in th9 read command.

65

g _d

The dt parameter on the copy command now causes drastically

different behavior than before. If you specify dt, the output

file will now have exactly the specified dr, interpolatin E the

input data as needed. In the previous version, you could use

either the thin parameter or the dt parameter to specify

thinning (though there were some subtleties in the use of dr).

In the current version, you get quite different results from

specifying dt than from specifying thin. The thin parameter

still specifies simple thinning.

NEW CAPABILITIES

The most important new capabilities are time-skewing and

interpolating data. With these capabilities, getDara can now

do essentially everything that the sync program could do.

Either linear interpolation or hold-last value interpolation

can be selected on a signal-by-signal basis. See the

discussions in the helpFiles on the new "skew" and "method"

commands, plus the added options in the "read" command. Be

warned, however, that invoking this capability causes large

increases in the required computer time and memory.

Closely related to the interpolation capability is the new

capability to force the output file to have constant specified

sample intervals. The data are interpolated to the required

output times. This capability is important for some analysis

programs that can not handle 4ata dropouts or other timing

irregularities. See the helpFile for the copy command,

particularly the dt parameter.

Another majol new feature is the ability to define some simple

calculations interactivsly, without writing Fortran code. You

can interactively define calculations that are simple linear

combinations of input signals. This includes such common

functions as averages, differences, sign changes, plus general

bias and scale factor corrections. See the helpFile for the

signals command. More complicated calculations still require

Fortran coding.

There are 2 new switches in the signals command: +all and

+delete. These allow such things as the much-requested

capability to change a single signal name without also

entering the entire list of unchanged signals.

The program is siEaifica_tly faster (except when the skew and

interpolation optionB are used) in some cases. There i8 an

overall speedup from the use of the optiaizer. (See the

caveats below). This typically seeas to gain about 20-30%.

13ere have also been some algorithm changes that significantly

speed up cases where a small number of parameters are being

read from a file with many parameters. The speedup is

sometimes as large as a factor of 2 in extreme cues. I

should note that it is still far slower than reading the same

parameters from a smaller file. Files with more than one or

two hundred parameters are inefficient and likely to remain

so, but the new algorithm reduces some of the efficiency

penalty. (You might consider splitting up such files).

SUBROUTINE INTERFACES

The interface to the calculated function subroutines has

changed for two reasons. First, the old interface caused

unacceptable performance penalties for the skewing and

interpolation options. The old interface provided no way for

the program to know what signals were actually needed, so all

available signals had to be skew-corrected and interpolated.

Second, as long as I was changing the interface anyway, I

added the capability to have multiple independent calculated

function modules installed at the same time. Thus, for

example, a user could add his own calculated functions in

addition to those defined and supported by the project.

Formerly, the easiest way to do this was to make 2 separate

getData ru_s, creati_g an intermediate file. (Sorry, this

capability does not apply to filters; only one filter module

can be installed in a single job).

The biggest effect is on the setupCalcs routines. Few changes

will need to be made in most versions of doCalcs. See the

"calculations" topic helpFile for details. There are sample

calculated function routines in the files sample.CF1.f,

sample.CF1.com, eample.filt.f and sample.filt.com in the

directory /user/maine/getData.3.1/source.

DOCUMENTATION

This file is available within getData by typing "help

version". All internal belpFiles have been substantially

revised. HelpFiles have been added for the calculated

function subroutines. A written manual for this version will

be prepared "soon."

CAVEATS

Large skews can eat up prodigious amounts of computer time

with this version; please exercise appropriate constraint.

SEE ALSO

Internal helpFiles.

KEYWORDS

version topic,

getData version 3.1/3.1.1 changes

AUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

DATE 5 Sept 86

4&

(;9

A.4 Calculated Function Subroutine Help Files

A.4.1 Subroutine AllocateCF_---

alloca_eCF [sub] -- locate signals for calculated functions

USAGE

call allocateCFx

DESCKIPTION

__nis subroutine defines and locates the signals used in the

calculated function routines. It also defines and allocates

the signals to be calculated. There is one allocateCFx

routine for each calculated function set, with x replaced by

the calculation set number (I to 5). It is called before any

calls to acrivateCFx or doCFx. It may be called multiple

times in a single run if multiple read commands are executed.

An allocateCFx routine should have 4 sections, performing the

operations described below. Much of the actual work is done

in subroutines and functions called by allocateCFx. All of

the subroutines and functions mentioned are provided

independently of the user-written calculated function

subroutines.

Alloca%eCFx will need one or more common blocks to pass data

to subroutines activateCFx and doCFx. I surest the common

block name /CFx/ for this purpose (with x replaced by the

calculation set number).

I. Declare a descriptive label (up to 60 characters) for the

calculation set by calling subroutine labelCalc. LabelCalc

has 2 arguments: the calculation set number and the label.

Example:

call labelCalc(1,'CFl sample. Richard Ma_ne. 12 Aug 86')

2. Find all input signals needed for the calculations by

calling function sigChan. SigChan has one argument: the

signal name. It returns an integer channel number for the

signal. A channel number of 0 means that the signal was

not found. You should save these channel numbers in common

block /CFx/, as they will be needed by subroutines

activateCFx and doCFx. I begin the variable names for

these numbers with an "i" to remind me that they are input

signals, but no naming conventions are enforced. Example:

70

iDeR = sigChan('deR')

iDeL = sigChan('deL')

iQbar - sigChan('qBar')

, Allocate channel numbers for all siEnals that are defined

by this calculation set by calling function calcChan.

CalcChan has one argument: the signal name. It returns an

integer channel number for the signal. A channel number of

0 means that the channel could not be allocated for some

reason (possibly dimension limits or a name conflict). You

should also save these channel numbers in common block

/CFx/ for use by subroutines activateCFx and doCFx. I

begin the variable names for these numbers with an "o" to

remind me that they are output signals, but no naming

conventions are enforced. Example:

oDe = calcChan('de')

oDa = calcChan('da')

oKeas = calcChan('keas')

, Disable those calculations needing unavailable signals by

calling subroutine cantCalc. Test for a channel number of

0 to determine if a signal is unavailable. CantCalc has a

single argument: the channel number of the calculated

signal. CantCalc will set this argument to 0 and will put

parens around the signal name so that future calls to

sigChan will not be able to find it. Defining and then

disabling a calculation like this is preferrable to just

bypassing the definition because the user will be able to

see the signal name in parens, indicating that the

calculation is installed but is missing some required

inputs. Example:

if (iDeL.eq.O .or. iDeR.eq.O) then

call cantCalc(oDe)

call cantCalc(oDa)

endif

if (iQbar.eq.O) call cantCalc(oKeas)

It is permissable to make multiple calls to cantCalc for the

same signal or for a signal that could not be allocated;

such redundant calls will have no effect.

T!

_d

NOTES

If any calculated function is used as an input to another

calculated function in the same CF routine, you must adhere to

the follo, ing conditions to correctly maintaln the

interdependencies of the calculations. These conditions are

automatically fulfilled for calculated functions used as

inputs in higher-numbered CF routines.

; (

; I

'i

J

To determine if a calculated resul_ is available for use in

another calculation, you test for a non-zero channel number

for the former calculation. For this test to work correctly,

it must be after any calls to cantCalc for the former

calculation. For instance, the sequence:

if (oDe.eq.O) call cantCalc(oAlpbaTrim)

if (iDeL.eq.O .or. iDeR.eq.O) call cantCalc(oDe)

is incorrect because oDe is tested before a possible call to
cantCalc for it.

EXAMPLES

The full text of the subroutines using the above examples is

in the files sample.CFl.f and sample.CFl.com in directory

/user/maine/EetData.3.1/source.

CAVEATS

Dent forget to declare sigChan and calcChan to be integer;

likewise for the output cha_nel number variables if you follow

my naming convention.

ERROR HANDLING

No special error treatment is needed other than that mentioned

in the above description.

SEE ALSO

calculations [topic]

activateCF, doCF [sub]

KEYWORDS

allocateCF/allocateCFx subroutine,

allocate channel numbers for (calculated functions)/calculations

AUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

DATE 29 Sept 86

72 ,)

A.4.2 Subroutine ActivateCFv---

activateCF [sub] -- activate needed calculated functions

USAGE

call activateCFx

DESCRIPTION

This subroutine activates calculated functions and their

inputs as needed for the following processing. There is one

activateCFx routine for aach calculated function set, with x

replaced by the calculation set number (I to 5). It is called

after allocateCFx and before doCFx. It may be called multiple

times. It will always be called at least once between any

call to allocateCFx and subsequent calls to doCFx.

An activateCFx routine should perform the 2 operations

described below, All of the subroutines and functions

mentioned are provided independently of the user-written

calculated function subroutines.

ActivateCFx will need the channel numbers determined by

subroutine allocateCFx and placed in common block /CFx/. It

will also need to pass activation flags to subroutine doCFx

through this common block.

I. Determine whether each calculated function is needed by

calling function isUsed, IsUsed has a single argument: the

channel number of the .alculated function_ IZ returns a

logical true if the signal should be calculated; otherwise

it returns false. You should save these flags in common

block /CFx/, as they will be needed by subroutine doCFx. I

begin the variable names for these flags with an "use", but

no naming conventions are enforced. Example:

useDe - isUsed(oDe)

useDa = isUsed(oDa)

useKeas ffiisUsed(oKeas)

2. For each needed calculation, declare that its input signals

are also needed by calling subroutine setUsed. SetUsed has

a single argument: the input channel number. Example:

if (useDe .or. useDa) then

call setUsed(iDeR)

call setUsed(iDeL)

endif

if (useKeas) call setUsed(iQbar)

)

It is permissahlo and normal to call 8otUsod multiple times

for the same signal. Although rarely useful, it i8 also

alloyed to call 8etUsed for a signal that is not available;

such a signal will have been set to channel number O, which
always contains the data value O.

NOTES

If any calculated function is used as an input $o another

calculated function in the same CF routine, you must adhere %o

the following conditions to correctly maintain the

interdependencies of the calculations. These conditions are

automatically fulfilled for calculated functions used as

inputs in higher-numbered CF routines.

You should no% call isUsed for any signal until after any

possible calls to setUsed for that signal. The code for such

situations should parallel the code in allocateCF, but in

reverse order. For instance, if allocatsCF has code like

if (iDeL.eq.O .or. iDoK.eq.O) call cantCalc(oDe)

if (oDe.eq.O) then

call cantCalc(oAlphaTrim)

call cantCalc(oDeErr)

endif

then activateCF should have code like

uAlphaTrim = isUsed(oAlphaTrim)

uDeErr = isUsed(oDsErr)

if (uAlphaTrim .or. uDeErr) call setUsed(oDe)

uDe = isUsed(oDe)

if (uDe) then

call setUsed(iDeL)

call setUsed(iDeR)

endif

EXAMPLES

The full text of the subroutines using the above examples is

in the files sample.CFl.f and sample.CF1.com in directory
/user/maine/getData.3.1/source.

ERROR HANDLING

No errors should arise.

SEE ALSO

calculations [topic]

allocatoCF, doCF [sub]

74

b

KEYWOKDS

activateCF/activa_eCFx subroutine.

activate (calculated functlons)/calculatlone

AUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

DATE 29 Sept 86

A.4.3 Subroutine DoCF_--

doCF [sub] -- evaluate calculated functions

USAGE

call doCFx (time,data,reset)

PARAMETERS

time: input, R*8

Time of this frame, in seconds.

data: i/o, R(*)*8

Data vector for this frame.

signals.
Contains both input and output

reset: input, L*4

Interval start flag. This flag will be true on the first

frame of each requested time interval; it will be false on

all other frames. This allows for the initialization of

counters, integrators, etc.

DESCRIPTION

This subroutine evaluates the calculated functions. There is

one doCFx routine for each calculated function set, with x

replaced by the calculation set number (I to 5). It is called

after allocateCF and activateCFx. It is called one time for

each output frame (record).

DoCFx will need the channel numbers and activation flags

placed in common block /CFx/ by subroutines allocateCFx and
activateCFx.

For each defined calculation, doCF should check the activation

flag and perform the calculation if it is active. The data

vector has all the needed input signals, skew-corrected and

interpolated to the output frame time. The channel numbers

are the indices into the data vector. The calculation results

are placed in this same vector, with indices given by their

channel numbers. Example:

if (useDe) data(oDe) = .5*(data(iDeL)+data(iD(R))

if (useDa) data(oDa) = .5*(data(iDeL)-data(iDeR))

if (useKeas) data(oKeas) ffiI7.17*sqrt(max(data(iQbar),zero))

76

EXAMPLES

The full text of the subroutines using the above examples is

in the files sample.CF1.f and sample.CF1.com in directory

/user/maine/getData.3.1/source.

CAVEATS

Note that the data vector is dimensioned from O, not from I.

The O'th element has the value O. Calculations that attempt

to use unavailable signals will get this 0 value instead. In

most cases, calculations that use unavailable signals will be

disabled, but it is permissable to activate such a

calculation, provided that 0 is an acceptable substitute input
value.

Channels in the data vector Zhat were not activated by calling

setUsed are undefined. They are not guaranteed to have a 0

value or even a legitimate value at all. Don't use them; if

you were going to, you should have called setUsed.

The values in the output signal channels of data are not

guaranteed to be retained between calls. If you need to save

an output value between calls, you must save it in a local or
common variable.

Do not put any result in the data vector unless you have

called isUsed for that signal and the result was true. Do not

assume that just because you called setUsed, that isUsed must

return true. (This assumption fails when setUsed is called

for an unavailable signal, which is unusual but is legal). If

you violate this rule, you might destroy the 0 value that is

supposed to be stored in channel O, causing havoc with other

calculations. If two or more signals share much of the same

computation, you may choose to compute all of the outputs

whenever any of them are needed. However, do not place the

results in the data vector without individually checking

whether each result is used. For instance, don't write code
like

if (uMach.or.uHp) then

call airData(data(iPs),data(iPt),data(oMach),data(oHp))
endif

77

Instead, do something like

if (uMach.or.uHp) then

call airData(data(iPs),data(iPt),mach,hp)

if (uMach) data(oMach) -mach

if (uHp) data(oHp) - hp
endif

ERROR HAMDLING

There are no special provisions for error handling. The code

should do whatever checks are necessary to assure valid

execution, for instance to avoid taking the square roots of

negative values. The code should not abort, except as a last

resort. Error messaEes should also be avoided because they

could become voluminuous if repeated every time point.

Reasonable error fixups include limiting values to valid

ranges, setting special flag values or holding the previous
value.

If you have to have an error message, consider logic to print

it only on the first occurance in each time interval. The

reset argument allows implementation of such logic. For
example:

if (reset) warned - .false.

if (<condition>) then

<fixup result>

if (.not.warned) write (output,,) '*** oops'
warned = .true.

endif

SEE ALSO

calculations [topic]

allocateCF, activateCF [sub]

KEYWORDS

doCF/doCFx subroutine,

do/perform/evaluate (calculated functions)/calculations

AUTHOR Richard Maine - NASA Dryden
VEKSION 3.1.1

DATE 29 Sept 86

T8

A.5 Filter Subroutine Help Files

A.5.1 Subroutine AilocateFilt--

allocateFilt [sub] -- locate signals for filter

USAGE

call allocateFilt (inF,inSig,nIn,maxOut,nOut)

PARAMETERS

inF: input, 1.4

Irput file number, from I to _he maximum number of input

files allowed.

inSig: i/o, C(*).16

Vector of signal names for this input file. On entry, it

has the names of the signals available on the file. On

return, the names of the filtered signals for that file

should be appended to the list.

nIn: input, 1.4

Number of signals available on this file.

number of valid names in inSi_ on entry.

This is the

maxOut: input, 1.4

Maximum number of filters that dimension limits allow for

this file.

nOut: output, 1,4

Number of filters allocated for this file. This should

equal the number of names appended to the inSig vector.

DESCRIPTION

This subroutine defines and locates the signals used in the

filter routines. It is called before any calls to

activateFilt, reMapFilt or doFilt. It may be called multiple

times with the same input file number if there are multiple

read commands. Each call overrides any previous call for the

same input file number.

The allocateFilt subroutine should perform the following

operations.

I. Determine which filters go with this input file number.

This is done by searching the inSig vector for the names of

the unfiltered signals. The function sIndex (provided) is

used to do this search.

79

ir

2. Append the names of the filtered signals for this file to

the inSig vector. Set nOuz to the number of filters

allocated. Do not exceed the dimension limit given by
maxOut.

3. Save the list of channel numbers for the unfiltered signals

(obtained from function sIndex) and the filtered signals

(allocated as you append to the inSig vector) in common

/filtCom/. Subroutines activateFilt, reMapFilz and doFilt

will need this data. Also, save a table that links the

input file number to the appropriate allocated filters.

EXAMPLES

A sample set of filter subroutines is in the files

sample.filt.f and sample.filt.com in directory
/user/maine/getData.3.1/source.

CAVEATS

Dont forget to declare sIndex to be integer.

ERROR HANDLING

You should probably put out an error message if signals

expected to be on the same file are not found together. You

should certainly pu_ out a message if filters are omitted

because of the dimension limit. In either case, return

normally after allocating those filters that you can.

SEE ALSO

calculations [topic]

activateFilt, reMapFilt, doFilt [sub]

KEYWORDS

allocateFilt subroutine,

allocate channel numbers for filters

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1

DATE 8 Sept 86

s0

A.5.2 Subroutine ActiuateFilt--

activateFilt [sub] -- activate needed filters

USAGE

call activateFil% (inF,iaOff)

PARAMETEILS

inF: input, 1.4

Input file number.

iaOff: input, 1.4

Offset of this input file in concatenated data vector.

DESCRIPTION

This subroutine activates filters and their inputs as needed

for the following processing. It is called after allocateFilt

and before reMapFilt and doFilt. I% may be called multiple

times. It will always be called at least once between any

call to allocateFilt and subsequent calls %o reMapFilt or

doFilt.

An activateFilt routine should perform the 3 operations

described below. All of the subroutines and functions

mentioned ara provided independently of the user-written

calculated function subroutines.

ActivateFilt will need the channel numbers determined by

subroutine allocateFilt and placed in common block /FiltCom/.

I. Use the table defined by allocateFilt to match the input

file number to the appropriate filters.

2. Determine whether each filtered signal is needed by calling

function isUsed. IsUsed has a single argument: the channel

number of the filtered signal within the concatenated

vector. To get this concatenated vector channel number,

you must add iaOff to the filtered channel numbor allocated

by allocateFilt. IsUsed returns a logical true if the

filtered signal is needed; otherwise it returns false.

3. Fcr each needed filter, declare that its input signal is

also needed by calling subroutine setUsed. SetUsed has a

,ingle argument: the input channel number within the

concatenated vector. As for the filtered signals, you must

get this concatenated channel number by adding iaOff to the

unfiltered channel number found by allocateFilt.

EXAMPLES

A sample set of filter subroutinu is is the files

sample.filt.f and sample.lilt.cos in direcZory

/user/maine/getData.3.1/source.

EKKOK HANDLING

No errors should arise.

SEE ALSO

calculations [topic]

allocateFilt, reMapFilt, doFilt [sub]

KEYWORDS

activateFilt subroutine,

activate filters

AUTHOR Kichard Maine - _ASA Dryden

VERSION 3.1.1

DATE 8 Sept 86

_2

_d

L_

m •

A.5.3 Subroutine ReAlapFiit--

reMapFilt [sub] -- reMap filters to compressed locations

USAGE

call reMapFilt (inF,iuMap)

PARAMETERS

inF: input, 1.4

Input file number.

iuMap: input, 1,4

Map from uncompressed locations to compressed locations.

DESCRIPTION

This subroutine reMaps the channel numbers used by the filter

subroutines. It is called after each call to activateFilt,
before any subsequent calls to doFiit.

The channel numbers initially allocated in allocateFilt

reserve channels for all signals available on each input file.

For efficiency, the actual processing uses a data vector

composed of only the signals needed, with the unused signals

omitted. The doFilt routine operates on this compressed data
vector.

Subroutine reMapFilt generates the ch_lnel numbers vectors

used in doFJlt by reMapping the original channel number

vectors onto the compressed ones. The comvressed vectors must

be distinct from the original ones insteado_ overwriting them

because reMapFilt can be called multiple times after a single

call to allocateFilt. The iuMap vector gives the compressed

channel number corresponding to each original channel number.

Signals in the original vector that are omitted from the

compressed vector are mapped to compressed channel O.

ReMapFilt will need the channel numbers determined by

subroutine allocateFilt and placed in common block /Fi!tCom/.

It will also need to pass the compressed channel numbers to

subroutine doFilt through this conmon block• The subroutine

performs the following operations.

I. Use the table defined by allocateFilt to match the input

file number to the appropriate filters. Then zero the list
of used filters

, Check each filter defined for that file to see if the

channel number of its filtered signal maps to a compressed

channel of O. (Checking the return from isUsed ought to be

equivalent, but you are about to use the mapped channel

number anyway, so checking the channel number is more

conzsnienZ and less prone to obscure errors). If the

channel number maps %o O, skip that filter.

3.

For each filtered channel that does not map to O, increment

the count of used filters for the file and save the mapped

channel numbers for the filtered signal and its unfiltered
source.

EXAMPLES

A sample set of filter subroutines is in the files

sample.filt.f and sample.filt.com in directory

/user/maine/getData.3.1/source.

ERRCR HANDLING

No erroxs should arise.

SEE ALSO

calculations [topic]

allocateFilt, aczivateFilt, doFilz [sub]

KEYWORDS

reMapFil_ subroutine.

reMap filter channel numbers

AUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

DATE 8 Sept 86

H4

• t#

A.5.4 Subroutine DoFilt--

doFilt [sub] -- evaluate filters

USAGE

call doFilt (inF,time,data,reset)

PARAMETERS

inF: input, 1,4

Input file number.

time: input, R*8

Time of this frame, in seconds.

data: i/o, R(*)*8

Data vector for this frame.

filtered signals.
Contains both unfiltered and

reset: input, L*4

Interval start flag. This flag will be true on the first

frame of each requested time interval; it will be false on

all other frames. This allows for the initialization of

counters, integra.)rs, etc.

DESCRIPTION

This subroutine evaluates the filters. It is called after

allocateFilt, activateFilt and reMapFilt. It is called one

time for each record of each input file.

DoFilt will need the compressed channel numbers placed in

common block /FiltCom/ by subroutine reMapFilt. It should

perform the following operations.

i. Use the table defined by allocateFilt to match the input
file number to the appropriate filters.

2. For each filter in the compressed list for that file, copy

the data from the unfiltered channel to the filtered

channel. Separating this step from the actual filtering

makes it easy to concenate filters as is often useful. It

is fairly common, for instance, to concatenate a lowpass

and a notch filter on the same channels. If the unfiltered

data is first copied to the filtered channel, each the

filter can then do its work in place, regardless of whether

it is tl,e first filter in the concatenation or not.

3. Then call subroutines to perform the appropriate recursive

filtering in place. It is normally most flexible to have

the actual filtering done in these subroutines one level

lower rather than directly in subroutine doFilt.

EXAMPLES

A sample set of filter subroutines is in the files

sample.filt.f and sample.filt.com in directory

/user/maine/getData.3.1/source.

CAVEATS

The values in the filtered signal channels of data are not

guaranteed to be retained between calls. If you need to save

an output value between calls, you must save it in a local or

common variable.

The question of what %o do when a time dropout is detected

(assuming that you test for such conditions at all) is

complicated. I do not know a simple all-inclusive answer

other than to suggest that the filtered data is likely to be

questionable in the immediate vicinity of a dropout. There

are probably ways of "properly" filtering through dropouts,

but they are likely to be complicated.

ERROR HANDLING

Ther_ are no special provisions f_r error handling.

SEE ALSO

calculations [topic]

allocateFilt, activateFilt [sub]

KEYWORDS

doFilt subroutine,

do/perform/evaluate filtering/filters

IUTHOR Richard Maine - NASA Dryden

VERSION 3.1.1

[)ATE 8 Sept 86

A.6 File Read Subroutine Help Files

A.6.1 Function OpenR--

openR [sub] -- open a time history file for reading

USAGE

logical = o_enR(unit,name,nChans)

PARAMETERS

unit: input, 1.4

fortran unit number.

name: input, C*(*)

file name.

nChans: output, 1.4

number of channels available on'the file.

openR: return, L*4

true if open is successful.

DESCRIPTION

Opens a time history data file for reading. This is one of

the time history file interface routines. It must be called

before any other reference to a file by the file interface

read routines. There are several different versions of the

routine for accessing different file formats. _e interface

to all versions is identical.

EXAMPLES

integer unit,nChans

logical openR

if (.not.openR(unit,'data',nChans)) write(*,*) 'onen failed.'

CAVEATS

Some versions may support only one time history data file open

for reading at a time.

SEE ALSO

fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite

closeR, rSigs, sigsR, chansR, rewR, fRead, fSeek

_7

LIBRARY

3obs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In

addiZion, most of the inzerface libraries use subroutines in
/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fKead.

The library /user/maine/fRead/auto.o is the most generally

useful one. It automatically recognizes several file formats

and reads them appropriately. It can also handle multiple

files simulZaneously opened with different formats.

KEYWORDS

°PenK.closeR,rSigs,sigsR,chansR.rewK.fRead.fSeek,

Zime history data file read/access/interface

subroutines/routines,

open a file for read

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2

DATE 11/19/85

_d

A.6.2 Subroutine RSigs--

rSigs [sub] -- return list of signal names on time history file

USAGE

call rSigs(unit,sigs)

PAKAMETEKS

unit: input, 1.4

fortran unit number.

sigs: output, C(*)*(*)

List of names of the available signals. This list is in the

order of the channels on the file. It reflects all

available signals, not the currently selected list of

signals to be read.

DESCRIPTION

This is one of the time history interface routines. It

returns a list of the names of the signals available on a

file. The list returned includes all available signals, in

the order of their channel numbers; i.e., it is the list of

signals that would be returned if sigs_ or chansR were not

called. Any calls to rSigs must b_ after openR is called and

before closer is called for the referenced file. Some

implementations may further restrict rSigs to be illegal after

any calls to fRead or fSeek for the referenced file. To be

comparable with all implementations, you should adhere to this
restriction.

There are several different versions of the routine for

accessing different file formats. The interface to all

versions is identical.

EXAMPLES

integer unit

character sigs(200)*16

call rSigs(unit,sigs)

SEE ALSO

fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite

openR, closeR, sigsR, chansR, rewR, fRead, fSeek

_9

v_w

LIBRARY

Jobs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In

addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most Eenerally

useful one. It automatically recoEnizes several file formats

and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS

°PenR,cl°seK,rSigs,sigsK,,.haneK,rewR,fKead,fSeek,

time history data file read/access/interface

subroutines/routines,

return/get list of available (data channel)/signal names

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2

DATE 11/19/85

9O

A.6.3 Subroutine Sigsl_--

sigsR [sub] -- specify signals to read from time history file

USAGE

call sigsR(unit.sigs,nChans)

PARAMETERS

unit: input, 1.4

fortran unit number.

sigs: input, C(.).(.)

List of names of the signals to be read. The data vector

returned from subsequent calls to fRead or fSeek will

contain values for these signals. A signal name of " "

(blank) indicates that a constant value of O. is to be

returned to the corresponding location. Signal names may be

repeated in this list to duplicate values to 2 or more

locations in the data vector. Signal names are not case

sensitive.

nChans: input, 1.4

Length of the sigs vector; i.e., the number of signals to be

read. Currently limited to a maximum of 1000 (but this

limit can easily be increased as needed).

?ESCRIPTION

This is one of the time history interface routines. It

specifies the signals to be read by subsequent calls to fRead

or fSeek. It can be called at any time after the initial call

to openR for a file. It take_ effect immediately. This

routine can be called any number of times to change the

signals being read. When a file is opened by openR, it is

initialized to return all of the available channels in

numerical order; this order is in effect until the first call

to chansR or sigsR.

There are several different versions of the routine for

accessing different fil9 formats. The interface to all

versions is identical.

Signals to be read can alternately be specified by calling

chansR, which is simillar to sigsR, except that chansR finds

signals by channel number instead of by name.

91

EXAMPLES
integer unit,nChans

character sigs(200)_16

call sigsR(unit,sigs,nChans)

ERROR HANDLING

In most versions, signal names not matching available signals

result in an error messago and return the constant value 0 in

the corresponding data location.

SEE ALSO

fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite

openR, closeR, rSigs, chan_R, rewR, fRead, fSeek

LIBRARY

Jobs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In

addition, most of the interface libraries use subroutines in

/user/maine/lib/misc.lib.o.

The intelface subroutlnes are in the directory

/user/maine/fRead.

The library luser/maine/fReadlauto.o is the most generally

useful one. It automatically recognizes several file formats

and reads them appropriately. It can also handle multiple

files simultaneously opened with different formats.

KEYWORDS

openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,

time history data file read/access/interface

subroutines/routines,

specify/select (data channels)/signals for read

AUTHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE 11/19/85

L

_d

A.6.4 Subroutine ChansR--

chansR [sub] -- specify channels to read from time history file

USAGE

call chansR(unir,chans,nChans)

PARAMETERS

unit: input, 1,4

fortran unit number.

chans: input, I(*).4

List of the channel numbers to be read. The data vector

returned from subsequent calls to fRead or fSeek will

contain values for these channels. Channel numbers must be

between 0 and the number of channels available on the file

(as returned by openR). A channel number of 0 indicates

that a constant value of O. is to be returned to the

corresponding location. Channel numbers may be repeated in

this list to duplicate values to 2 or more locations in the

data vector.

nChans: input, 1.4

Length of the chans vector; i.e., the number of channels to

be read. Currently limited to a maximum of I000 (but this

limit can easily be increased as needed).

DESCRIPTION

This is one of the time history interface routines. It

specifies the channels to be read by subsequent calls to fRead

or fSeek. It can be called at any time after the initial call

to openR for _ file. It takes effect immediately. This

routins can be called any number of times to change the

channels being read. When a file is opened by openR, it is

initialized to return all of the available channels in

numerical order (i.e. chauns(i):i); this order is in effect

until the first call to chansR or sigsR.

There are several different versions of the routine for

accessing different file formats. The interface to all

versions is identical.

Channels to be read can alternately be specified by calling

sigsR, which is simillar to chansR, except that sigsK finds

channels by name instead of by channel number.

93

EXAMPLES

integer unit ,nChans,chans(200)

call chansR(unit, chans ,nChaDs)

SEE ALSO

fileIn_erface, uncl, uric2, cmp2, openW, cloaeW, /Write

openK, closeR, rSigs, sigsK, rewR, fRead, fSeek

LIBRARY

Jobs using a particular set of file interface routines must

bind in the library containin E the appropriare routines. In

addition, most of the interface libraries use subroutines in

/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory

/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally

useful one. It automatically recognizes several file formats

and reads them appropriately. It can also handle multiple

files simultaneously opened with different formats.

KEYWORDS

openK,closeK,rSigs,sigsR,chansR,rewR,fRead,fSeek,

time history data file read/access/interfacs

subroutines/routines.

specify/select (data ¢hannels)/signals for read

AUTHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE 11/19/85

A.6.5 Subroutine Rew_t--

rewR [sub] -- rewind a time history data file

USAGE

call rewR(unit)

PARAMETERS

unit: input, 1.4

fortran unit number.

DESCRIPTION

This is one of the time history interface routines. It

repositions an input time history file so that the next call

to fRead will return the first record of the file. It can be

called at any time after the initial call to openR for a file.

There are several different versions of the routine for

accessing different file formats. The interface to all

versions is identical.

EXAMPLES

integer unit

call rewR(unit)

SEE ALSO

fileInterf_ce, uncl, unc2, cmp2, openW, clos_W, fWrite

openR, closeR, rSigs, chansR, sigsR, fRead, fSeek

LIBRARY

Jobs using a particular set of file interfa=e routines must

bind in the library containing the appropriate routines. In

addition, most of the interface libraries use subroutines in

/user/maine/lib/misc.lib.o

The interface subroutines are in the directory

/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally

useful one. It automatically recognizes _everal file formats

and reads them appropriately. It can also handle multiple

files simultaneously opened with different formats.

P

KEYWORDS

openR,closeR,rSigs,sigsR,chansR,rewR,f_ad,fSeek,

time history data file read/access/interface

subroutines/routines,

reeind/reposition a time history file

AUTHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE 11/19/85

A.6.6 Function FSeeL,--

fSeek [sub] -- read a random record from a time history file

USAGE

logical = fSeek(unit,tSeek,time,data)

PARAMETERS

unit: input, 1.4

fortran unit number.

tSeek: input, R*8

time requested, seconds.

time: output, K*8

time of the record returned, seconds.

data: output, K(*)*8

data values for this time. The values are in the order

previously specified by calling sigsK or chansR, or in the

default order for the file if neither sigsR nor chansK has
been called.

fSeek: return, L*4

returns true if a record was successfully read. If there

was no data at or after the requested time, then fSeek

returns false. In this event, the values of time and data

are undefined.

DESCRIPTICN

This is one of the time history interface routines. It

repositions a time history file ro a requested time and

returns a record of data. It can be called at any time after

the initial call to openR for a file. The record returned is

the first record with time greater than or equal to the

requested time. If there is no such record, then fSeek

returns a false value.

There are several different versions of the routine for

accessing different file formats. The interface zo all

versions is identical.

EXAMPLES

integer unit

logical fSeek

double precision tSeek,time,data

if (.not.fSeek(unit,tSeek,time,data)) write(*,*) 'no such time'

'\

97

CAVEATS

A successful (true) return from fSeek is no guarantee that the

returned time is anywhere near the requested time. It

indicates only that the returned time is later. If the

requested time is before the first available time or is during

a time interval missing from the file, the actual time

returned may be substantially later.

The intent of fSeek is to provide fast random access to the

beginning of a time interval, with subsequent records to be

retrieved by fRead. The implementation varies widely with

different file types. With some file types, it is impractical

to randomly reposition a file. In these cases, fSeek may be

implemented by rewinding and then reading to the desired

record. Therefore, truly random access to individual records

should be avoided; it will work, but may be excruciatingly

slow, depending on the file type.

SEE ALSO

fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite

openR, closeR, rSigs, chansR, sigsR, rewK, fRead

LIBRARY

Jobs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In

addition, most of the interface libraries use subroutines in

/user/maine/lib/misc.lib.o.

ThQ :aterface subroutines are in the directory

/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally

useful one. It automatically recognizes several file formats

and reads them appropriately. It can also handle multiple

files simultaneously opened with different formats.

KEYWOKDS

openR,closeK,rSigs,sigsR,chansR,rewR,fRead,fSeek,

time history data file read/access/interface

subroutines/routines,

read data/(random record) from a time history file,

reposition a time history file

AUTHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE 11/19/85

(

)

!

I

9_

A.6.7 Function FRead--

fRead [sub] -- read next record from a time history file

USAGE

logical ffi fRead(uniz,time,data)

PARAMETERS

anit: "nput, 1.4

fortran unit number.

time: output, R*8

time of the record returned, seconds.

data: output, R(*)*8

data values for this time. The values are in the order

previously specified by calling sigsR or chansR, or in the

default order for the file if neither sigsR nor chansR has

been called.

fRead: return, L*4

returns true if a record was successfully read. If there

was no more data to read, then fRead returns false. In this

event, the values of time and data are undefined.

DESCRIPTION

This is one of the time history interface routines. It

returns data from the next sequential record of a time history

data file. It can be called at any time after the initial

call to openR for a file. The initial call to openR

initializes a file to return the first available record.

Records are then returned in sequential order, except as

modified by calls to fRew or fSeek.

There are several different versions of the routine for

accessing different file formats. The interface to all

versions is identical.

EXAMPLES

integer unit

logical fRead

double precision time,data

if (.not.fRead(unit,time,data)) write(*,*) 'no more data'

i it

99

0

SEE ALSO

fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite

openR, closeR, rSigs, chansR, si_sR, rewR, fSeek

LIBRARY

Jobs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In

addition, most of the interface libraries use subroutines in

/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory

/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally

useful one. It automatically recognizes several file formats

and reads them appropriately. It can also handle multiple

files simultanecusly opened with different formats.

KEYWORDS

openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,

time history data file read/access/interface

subroutines/routines,

read data/(next record) from a time history file

AUTHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE 11/19/85 i

IO0

A.6.8 Subroutine CloseR--

closer [sub] -- close a time history data file

USAGE

call closeR(unit)

PARAMETERS

unit: input, 1.4

fortran unit number.

DESCRIPTION

This is one of the time history interface routines. It closes

an input time history file. It can be called at any time

after the initial call to openR for a file. If called for a

file that has not been opened, it has no effect. After closer

has been called, no more time history interface routines can

be called for that unit until openR has been called again. It

is allowed to close a unit with closer and then re-open the

unit with openR for the same or a different file.

You can usually get by without calling closer if you will be

making no more calls to the file interface routines. Use of

closer is advisable, however, and may help avoid conflicts

with other jobs.

There are several different versions of the routine for

accessing different file formats. The interface to all

versions is identical.

EXAMPLES

integer unit

call closeR(unit)

SEE ALSO

fileInterface, uncl, un¢2, cmp2, openW, closeW, fWrite

openK, rSigs, chansR, sigsR, rewR, fKead, fSeek

LIBRARY

Jobs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In

addition, most of the interface libraries use subroutines in

/user/maine/lib/misc.lib.o

I01 i

The interface subroutines are in the directory

/user/maine/fRead.

The library /user/maine/fKead/auto.o is the most generally

useful one. It automatically recognizes several file fonna_s

and reads them appropriately. It can also handle multiple

files simultaneously opened with different formats.

°

KEYWOKDS

openK,closeK,rSigs,sigsR,chansK,rewK,fKead,fSeek,

time history data file read/access/interface

subroutines/routines,

close a time history file

AUTHOK Kichard Maine - NASA Dryden

VERSION 1.2

DATE 11/19/85

i

:\

102

A.7 File Write Subroutine Help Files

A.7.1 Function Ope_W--

openW [sub3 -- create and open a new time history file

USAGE

logical " openW (unit, name, nChans, s igs, format)

PARAMETERS

unit: input, 1.4

fortran unit number.

name: input, C*(*)

file name.

nChans: input, 1,4

number of channels to be written on the file. Currently

limited to 1000, but this limit car, be easily changed.

sigs: input, C(*)*(*)
List of names of the signals to be written. _nis list must

be in the same order as the signals will be supplied co

fWri_e. There are nChans elements of the list. The signal

names should be left-justified and contain no embedded

blanks or other special characters. The write routines will

work with any signal names, but many programs that access

the files will have trouble parsing their input if the

signal names contain special characters. The names are

case-insensitive, so case can be freely used to enhance

readability. Duplicate signal names will cause problems in

most programs and should be avoided.

format: input, Ca(*)

Format to be used for the file. _e interpretation of this

parameter depends on the particular write routines, k

particular set of write routines is free, for instance, to

ignore this parameter and write in a single pre-determined

format. Alternatively, a set of write routines supporting a

particular format can verify that the requested format is

the supported one. The auto write routines use this

parameter to determine which of several supported formats to

write.

openW: return, L*4

true if open successful.

I03

DESCRIPTION

Creates and opens a new time history data file for writin E.

This is one of %he time history file interface routines. It

must be called before any other reference to a file by the

file interface write routines. There are several different

versions of the routine for creatin E different file formats.

The interface to all versions is identical.

EXAMPLES

integer uait,nChans

character sigs(200)*16

logical openW

if (.not. openW(unit,'data',nChans,sigs,'cmp2')) then

write (*,_) 'oops'

endif

CAVEATS

Most versions of 0penW attempt to delete any pre-existing file

of the same name in order to avoid conflicting file structure

data. Therefore, you can not use makeFile to override

characteristics of a file about to be written. You can use

file equates for such overrides. Equate specifications

incomparable with the particular routines may cause various

errors.

Poor signal name choices (such as names with embedded or

leading blanks) will cause no problems when writing the file;

it will just make access to those signals difficult for many

programs.

SEE ALSO

fileInterface, uncl, unc2, cmp2, closeW, fWrite

openR, closeR, rSigs, sigsR, chansR, rewR, fRead, fSeek

LIBRARY

Jobs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In

addition, most of the interface libraries use subroutines in

/user/_aine/lib/misc.lib.o.

The interface subroutines are in the directory

/user/maine/fWrite. The most commonly used set is

/user/maine/fWrite/auto.o.

i

104

KEYWORDS

openW, closeW, fWrite,

time history dat_ 'rile vrite/Interface subroutines/routines,

open a file for .ti,e

AUTHOK Richard Maine - NASA Dryden

VERSIgN 2.1

DATE 12/27/85

105

A.7.2 Subroutine FWrite--

fWrite [sub] -- write record to a time history file

USAGE

call fWrite(unit,time,data)

PARAMETERS

unit: input, 1.4

fortran unit number.

time: input, R*8

time of the record, seconds.

data: input, R(*)*8

data values for this time. The values must be in the order

specified in the openW call. The number of data values must

agree with the number specified in the call to openW.

DESCRIPTION

This is one of the time history interface routines. It writes

data to the next sequential record of a time history data

file. OpenW must previously have been called to open the file

for writing. Subroutine fWrite is then called repeatedly to

write the records on the file. This must be followed by a

call to closaW to close the file.

The're are several different versions of the routine for

accessing different file formats, lq_e interface co all

versions is identical.

EXAMPLES

integer unit

double precision time,data

call fWrite(tmit,time,data)

CAVEATS

The times in successive calls to fWrite are assumed to be in

increasing order. There is no provision for fWrite to sort

the records internally. This should be enforcgd by the

calling program. The consequences of violating this

limitation may vary widely depending on the particular

implementation. Some implementations may abort. Other

implementations may write a file that can be read

sequentially, but cannot be positioned with fSeek. Some

implementations may even work (but none of the current ones

do).

I06

SEEALSO
file!nterface, uncl, unc2, cmp2, openW, closeW

openR, closeR, rSigs, chansR, sigsR, rewR, fRead, fSeek

LIBRARY

3obs using a particular seZ of file interface routines must

bind in zhe library containing the appropriate routines. In

addition, most of zhe inEerface libraries use subroutines in

/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory

/user/maine/fWrite. The most commonly used set is

/user/maine/fWriZe/auto.o.

KEYWORDS

openW,closeW,fWrite,

time history data file write/interface subrouZines/_ouzines,

write data/(nexZ record) to a time history file

ALYrHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE 11/19/85

107

As boutc dtil II!
closeW [sub] -- close a time nis ory e l a

USAGE " !

call closeW (unit) 1

PARAMETERS i(!

unit: input, 1,4

fortran unit number.

G

l

DESCRIPTION

This is one of the time history interface routines. It closes

an output time history file. It can be called at any time

after the initial call to openW for a file. If called for a

file that has not bean opened, it has no effect. After closeW

has been called, no more time history inter_ace routines can

be called for that unit until openR is called to open it for

raading. It is not allowed to re-open the _il_ for writing;

any such attempt will delete the old data a_d create a new

file.

You must call closeW in order to finish the creation of a time

history file. If closeW is not called, the resulting file may

be missing critical info_-Tmation required fol the read routines

to work.

There are several different versions of the routine for

accessing different file formats. The intezface to all

versions is identical.

EXAMPLES

integer unit

call closeW(unit)

SEE ALSO

filelnterface, uncl, unc2, cmp2, openW, fWrite

openR, closeR, rSigs, chansR, sigsR, rewR, fRead, fSeek

LIBRARY

Jobs using a particular set of f11e interface routines must

b_ d in the library containing the appropriate routines. In

add_tiGn, most of the interface libraries _se subroutines in

/user/maine/lib/misc,lib.o.

me interface subroutines are in the directory

luserlmaine/fWrite. The most commonly used set is

luserlmaine/fWrite/auto.o.

KEYWORDS

openW.closeW.fWrite.

time history data file write/interface subroutines/routines,

close a time history file

AUTHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE 11/19/85

5

Pi

109

A.8 File Format Help Files

A.8.1 ASCII 1 Format--

ascl [file] -- ascii I file format

DESCRIPTION

This is a simple ascii format intended primarily for transfer

of data tapes between different computers. It is not

recommended for internal Elxsi use because of its

inefficiency, both in file size and access time.

EXAMPLES

A short sample file is in /user/maine/helpFiles/file/ascl.sample.

TAPE SPECIFICATIONS

As the format is primarily aimed at tape data transfer, this

section documents preferred tape characteristics. The format

is not actually limited to tape media.

9-track tape

6250 bpi preferred, 1600 bpi available, limited 800 bpi

capability.

ANSI labeled preferred. Unlabelled available if needed.

ASCII coded data, parity blt is always O.

Fixed length 8000-character blocks. Last block in a file

may be shortur. Other block lengths are available if

needed, subject to the restrictions that the length must

be a multiple of 80 and must be no more than 32720.

RECORD STRUCTURE

The data is organized into fixed length 80-character records.

In most cases, a logical record requires more than 80

characters; the logical record is then split into multiple

80-character records. Any unused fields in a record are

padded with blanks.

HEADER RECORDS

The first several records on a file are header records

describing what signals are on the tape. The first 8

characters of each header record are a tag to identify the

type of data on that record. As currently implemented, these

tags are redundant, because the exact same records are always

written in exactly the s_me order. The format does allow for

future expansion by the addition of more header records and

programs accessing the files should take this into account; at

a minimum the programs should verify that the header records

found agree w_th those e_pected.

110

Q

All character data in the header records, including the record

type tags and the signal names, should be treated in a

case-insensitive manner on machines that distinguish between

upper and lower case letters. All character data are

left-justified in their fields. Character constant values are

indicated below in quotations. Tb.e quote marks are not

actually part of the data.

A. format record.

The first record of the file identifies the file format. This

makes provision for automatic handling of different formats.

The fortran format of the record is (a8,a8).

Columns Field-Name Field-Format Valus

I-8 record-Type a8

9-16 file-format a8

constant - 'format'

constant - 'asc 1'

B. nChans record.

The second record of the file specifies the number of channels

(signals) contained on the file. The fortran format of the

record is (a8,i8).

Columns Field-Name Field-Format Value

I-8 record-Type a8

9-16 nChans i8

constant - 'nChans'

variable - number of chans

C. names records.

The 3rd logical record of the file spcifies the names of the

signals on the file. This logical record is continued across

as many physical 80-column records as required. The format of

the continuation records, if any. is slightly different from

that of the initial record. (Fortran naturally handles this

with the format shown here). The fortran format of the

initial record is (a8,8x,4a16), and that of the continuation

records is (5a16); the entire logical record is naturally read

with the fortran format (a8,8x,4a16/(Sa16)).

The format allows names up to 16 characters long. Particular

projects are likely to restrict the names actually used to

smaller limits in order to accomodate programs unable to

handle longer names. Note that shorter names are always left

justified in the 16 character fields.

111

Initial record layout:

Columns Field-Name Field-Format Value

1-8 record-Type a8

9-16 unused 8x

17-32 name-I a16

33-48 name-2 a16

49-64 name-3 a16

65-80 name-4 a16

constant - Jnames)

variable - name of sig I

variable - name of sig 2

variable - name of sig 3

variable - name of sig 4

Continuation records contain 5 names each (possibly less on the last
record) in 16-character fields.

D. dataO01 record.

The dataO01 record indicates the end of the header records.

The purpose of this record is to allow for easy future

expansion of the header records. The preferred way to

position the file at the beginning of the actual data is to

rewind and search for the dataO01 record. Programs using this

method will work unchanged if future additional header records

are defined (assuming that the programs do not need the

information in the new headers).

Columns Field-Name Field-Format Value

1-8 record-Type a8
constant - JdataO01'

DATA RECORDS

The remainder of the file, after the header records, consists

of data records. The data for each time consititutes a single

logical data record. This logical record can (end usually

does) span several physical 80-character records.

For each time, there is a single value for every signal on the

file. There is no provision for data compression or for

multi-sample-rate data on a single file. If a signal was

sampled at a higher rate than the sample rate of ths fil_,

then the signal will be thinned. If a signal was sampled at a

lcwer rate than the sample rate of the file, each sample will

be repeated _lultiple times on the file. (Note that this is

hold-last-value processing, NOT linear interpolation). If

precise representation of data at multiple sample rates is

needed, then the data at each sample rate must be requested as
a separate file.

i
t

,)

4,

112

Although each file will have a nominal sample rate, it is not

guaranteed to be an absolutely fixed rate. There may be time

dropouts. Also, if the PCM system is not I_tnning at exactly

the nominal rate, the processing will follow the PCM system,

not the nominal rate. The time of each record is indicated in

the first field of the record. This time is accurate. Times

implied by assuming exactly constant nominal sample rates are

not guaranteed to be accurate.

All data are in format g20.14, 4 fields to a physical record.

(The time is actually written in format (fLO.3,1Ox), but this

can be read as a g20.14 field with no special fortran

cons ider at ions) •

The data in the data records are time, followed by the da_a

values. Time and the first 3 data values are on the first

80-colulu_ record of each time point; the following records for

each time point have 4 data values each (possible less on the

last record of a time point). The data vslues are in the same

order as listed in the names header record.

Time is in floating point seconds past midnight (usually local

time, but this may vary from project to project).

All data values are represented as floating point engineering

units values, me units of measure for each signal are

separately documented. Any integer values (_:uch as d'Lgital

words) are converted to floating point for consistency.

Character-valued data is not supported.

POSSIBLE VARIATIONS AND FLrruP_PLANS

The 20 character data fields are quite liberal to ensure that

ao accuracy will be lost. They do, however, require quite a

bit more tape than smaller field widths. We will consider

requests for formats with smaller fields that use less file

size at the cost of some accuracy. Field widths as small as

LO characters may be acceptable for some applications, but the

accuracy may be marginal (only 4 significant digits can be

guaranteed zo fit in a I0 character field with standard

fortran formats). It would make the format considerably more

complicated to mix field lengths in the same file, and we do

not propose to do that.

®

Future expansion may include the addition of additional header

records giving such data as time skew and units of measure.

Guidelines are given above for how to program ln a way

guaranteed to be comparable with such future expansions.

SUBROUTINES

For read access, use /user/maino/fRead/auto.O, which

automatically recognizes this or several other formats. A set

of write routines that handles this and other formats is in

/user/maine/fWrite/auto.o. Both read and trite routines are

currently limited to 10 simultaneously open files.

CAVEATS

Current dimensions allow up to I000 channels per file.

can be easily changed if required.

This

SEE ALSO

fileInterface.openR.closeR.rSlgs.sigsR.chansR.rowR.froad.fSeek.

openW.closeW.fWrite

KEYWORDS

ascl/ascii file format/access.

_ime history data file read/write/access/interface

subroutines/routines.

openR.closeR.rSigs.sigsR_chansR.re,R.fRead.fSeek.

openW, closeW, fWrite

AUTHOR Richard Maine - NASA Dryden

VERSION I.I

DATE I/8/86

114

A.8.2 Compressed 2 Format--

cmp2 [file] -- compressed file format 2

DESCKIPTION

This is a compressed format. It uses byte-aligned R*4 data to

make access relatively fast and easy. There are header

records describing various aspects of the file and its data.

The format is designed primarily for KAM access, but is

largely comparable with sequential access. Early versions may

be sequential until KAN matures sufficiently.

The cmpl format (now obsolete) is identical %o cmp2, except

that cmpl omits the 'dataO01' header record.

DATA RECORD FORMAT

rime: 1,4 -- This is the primary record key. It is scaled

time. The actual time in secs is

timeO+timeScale*(time-keyOffse%), where keyOffso%, timeO

and timeScale are specified in the header.

recFlags: I.I -- Record type flags.

Bits 6-7 (Isb) are O0 for a full frame, 01 for a hit-map

compressed frame, or 10 for a channel-list frame. The

value 11 is reserved for future enhancements.

The other 6 bits are currently unused.

chanFlags: Bit(nChans) -- This field is used iff recFlags

is 1. When this field is present, each bit represents a

channel. A 1 means this record has a value for that

channel; 0 means the previous value should be retained.

The field is padded with O's %o the next byte boundary.

chanLis%: I(var)*1 -- This field is used iff recFlags is 2.

When the field is present, each byte is an unsigned

channel number, indicating that the record has a data

value for that channel. _"ne list is terminated by a zero

byte.

data: It(nChans)*3 -- Data values. There is one data value

for each channel specified by the chanFlags or chanList.

Full-frame records have a value for every channel. An

R*3 value is just an R*4 value, with the low-order

byte omitted.

HEADER RECORD FORMATS

Header records have primary keys O<pcimaryKey<keyOffset,

where keyOffset is specified in the header. They also have

an 8-character descriptive secondary key, which is the

second field of the record. Secondary keys are not required

to be unique.

115

Key=l.'format' +req

format: c.8 = 'cmp 2'

version: c.8 = _.I'

Key=lOO,'headers' +req

dummy: 1.4 -- currently unused, hardwired to 1000000.

lastHeaderKey: 1.4 -- key of the last defined header record.

headerKeySpace: -- key spacing for header records.

Key=2OO,'timeKey _

baseTime,timeScale: R*8 (currently=O.,2**-12)

keyOffset: 1.4 (currently=2**20)

fullInterval: 1.4 -- full frame interval in key units

(currently=10240)

Key=3OO,'nChans ' +req

nChans: 1.4 -- number of channels

Key=400,410,420,430,'namesl','names2','names3','names4 _ +req

names: C(nChan)*nameLen.

-- These 4 records contain the signal names, spilt into 4

parts. The first 4 characters of each name are in the

'names1' record, the second 4 characters of each name are

in 'names2' record, etc. The names are 16 characters

long. (The strange splitting of the names into

4-character chunks is to prevent this record from

quadrupling the maximum record size needed for the file,

which could adversely impact storage efficiency).

Key=?,'?'

user-specified data. (unimplemented)

SUBROUTINES

For read access, use /user/maine/fRead/auto.O, which

automatically recognizes this or several other formats. A set

of write routines that handles this and other formats is in

/user/maine/fWrite/auto.o. Both read and write routines are

currently limited to 10 simultaneously open files.

CAVEATS

Current dimensions allow up to 1000 channels per file.

can be easily changed if required.

This

SEE ALSO

filelnterface,openR,closeR,rSigs,sigsR,chansR,rewR,fread,fSeek,

openW,closeW,fWrite

IMPLEMENTATION

Currently uses SAM, which makes random access slow. KAM

versions have been tested, but not released for general use.

116

KEYWORDS

cmp21cmpl/compressed file format/access,

time history data file read/wrlte/access/interface

subroutines/routines,

openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,

openW, closeW, sigsW, fWriZe

AUTHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE 11/7/85

117

A.8.3 List 1 Format--

lisl [file] -- list I file format

DESCRIPTION

This is a simple Ascii format intended primarily for listing

to terminal screens or printers. Only writing of this format

is supported; files in this format are intended for human

examination, not input to computer programs. For Ascii file

transfer, use ascl format instead.

This format puts up to 5 data values per line. The data

values are formatted with five digits of precision. Time is

displayed in hours, minutes, seconds and milliseconds.

EXAMPLES

A short sample file is in /user/maine/helpFiles/file/lisl.sample.

SUBROUTINES

A set of of write routines that handles this and other formats

is in /user/maine/fWrite/auto.o. Read access to this format
is not supported.

CAVEATS

Current dimensions allow up to 1000 channels per file.

can be easily changed if required.
This

SEE ALSO

fileInterface,openR,closeR,rSigs,sigsR,chansR,rewR,fread,fSeek,
openW,closeW,fWrite

KEYWORDS

lisl/list file format/access,

time history data file read/write�access�interface

subroutines/routines,

°penR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
openW, closeW, fWrite

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1

DATE I/2/87

11_

"

A.8.4 Uncompressed 1 Format--

uncl [file] -- uncompressed file format I

DESCKIPTION

This is a simple, uncompressed file format. All records are

identical data records; there are no header records. The

first item of each record is time, stored as R*8 seconds.

Each data channel then has ,an R*4 value (converted to/from K*8

by the file access routines). This is a relatively close

analog to ',m_le' format files as used on the CDC. There are

no signal names or associated data.

Support for this format is limited and intended primarily for

compatability with old files. Support may be further limited

in the future. In particular, the automatic file format

recognition may be disabled for this format. (The requirement

to recognize this format degrades the error handling

capabilities of the automatic recognition routines). This

would require the user to bind special routines for reading
this format.

USAGE

Signal names in sigsR and rSigs are taken to be the channel

numbers, converted to left-justified character strings.

Subroutine sigsW does nothing.

SUBROUTINES

Source code for write routines is in /user/maine/fWrite/uncl.f.

I am not maintaining object code for writing in this format.

For read access, use /user/maine/fRead/auto.o, which

automatically recognizes this or several other formats.

Source code for a less versatile and efficient, but more

portable, set of read access routines is in

/user/maine/fread.simple.f.

CAVEATS

See the paragraph in the description section warning of the

limited support and possible future changes in the support of

this format.

Current dimensions allow up to I000 channels per file. This

can be easily changed if required.

119

SEE ALSO

fileInterface,openR,closeR,rSlgs,sigsR,chansR,rewR,fread,fSeek,
openW,closeW,fWrite

IMPLEMENTATION

Straightforward, except for fSeek. The simple version does

fSeek by rewinding and readin E until the desired time (slow,

but portable). The Elxsi-specific version operates similarly

unless the records are of fixed-length type (which it

determines by calling an Elxsi file system intrinsic). If the

records are of fixed-length type, fSeek does a fast search for

the start time using random access. The fWrite routines write

fixed-length record types by default.

KEYWORDS

uncl/mmleluncompressedlfixed file format/access,

time history data file read/writelaccess/interface

subroutines/routines,

°penR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,

openW, closeW, sigsW, fWrite

AUTHOR Richard Maine - NASA Dryden
VERSION i.I

DATE 1217184

120

A.8.5 Uncompressed 2 Format--

unc2 [file] -- uncompressed file format 2

DESCRIPTION

This is an uncompressed file format. There are header records

describing various aspects of the file and its data. The file

is designed for efficient access using Elxsi fortran

extensions, which allow intermixed direct and sequential

access. The format is not inherently Elxsi-specific, ho,ever.

A few convolutions in the format are to keep the header

records the same length as the data records in order to allow

simple direct access.

DATA RECORD FORMAT

The first item of each record is time, stored as R*8

seconds. Each data channel then has an R*4 value (converted

to/from R*8 by the file access routines). This is the same

data record format as used in 'uncl' format files.

HEADER RECORD FORMATS

The first item in each header record is an 8-character

descriptive key. These keys need not be unique. Occurances

of multiple records with the same key mean that the data are

concatenated to give the full fields.

Keyffi'format' +req (must be first record)

format: c.8 = 'uric 2 '

version: c.8 ffi'.1'

Key=_nChans ' ÷req (must be second record)

nChans: 1.4 -- number of channels

Keyffi'title'

title: C*(4*nChans) -- file title ('file title')

Key='names' +req (currently hard-wired to recs 4-7)

names: C(nChans)*4 -- channel names.

Key='timesO01' ÷req

sTime,eTime: R*8 -- interval start and end times

(unimplemented)

sRec,eRec: 1.4 -- interval start and end record numbers

(unimplemented)

Keyf'dataO01' +req

iTitle: C*(4*nChans) -- interval title ('interval I')

-- This record indicates the start of the data. It must be

the last record in the header portion of the file.

121

SUBROUTINES

For read access, use /user/maine/fRead/auto.O, which

automatically recognizes _his or several other formats. A set

of write routines that handles this and other formats is in

/user/maine/fWrire/auto.o. Both read and erite routines are

currently limited to 10 simultaneouily open files.

Source code for a less versatile, but _ore portable set of

read routines is in /user/maine/fRead/unc2.f. Source code for

a portable set of write routines handling only this format is

in /user/maine/fWrite/unc2.f.

CAVEATS

Current dimensions allow up to 1000 channels per file.

can be easily changed if required.

This

Current implementation supports only I interval per file.

SEE ALSO

fileInterface,openR,closeR,rSigs,sigsR,chansR,rewR,fread,fSeek,

openW,closeW,fWrite

IMPLEMENTATION

Most of the routines are identical to their uncl format

counterparts. The only difference is in the treatment of the

header records. (Skipping over them after rewinds, etc.)

FUTURE PLANS

The hard-wired header record numbers should be removed, and

key searches used instead Also, provision should be made for

other, user-specified header records. Treatment of multip).e

intervals in a file should be considered. Start-stop times

and records should be filled in the times records.

KEYWORD3

unc2/uncompressed/fixed file forlmat/access,

time history data file read/write�access/interface

subroutines/routines,

openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,

openW, closeW, fWrite

AUTHOR Richard Maine - NASA Dryden

VERSION 1.2

DATE I/8/86

122

Appendix B--Sample Calculation Routines

B.1 Sample Calculated Function Module

B.1.1 Subroutine AllocateCF1--

subroutine allocateCF1

c Richard Maine. 12 Aug 86.

c Locate input and output signals for calculated function.

c Simple sample version for aileron, elevator and keas calculations.

implicit none

********************* common.

common /CF1/ useDe,useDa,useKeas,iDeR,iDeL,oDe,oDa,iQbar,oKeas

integer iDeR,iDeL,oDe,oDa,iQbar,oKeas

logical useDe,useDa,useKeas

save /CF1/

********************* externals.

external labelCalc,sigChan,calcChan,cantCalc

integer sigChan ,calcChan

c........................... executable code

call labelCalc(1,'CFl sample. Richard Maine 12 Aug 86')

********************* locate input signals.

iDeR = sigChan('der')

iDeL = sigChan('del')

iQbar = sigChan('qbar')

********************* allocate calculated signals.

oDe fficalcChan('de')

oDa fficalcChan('da')

okeas = calcChan('keas')

J,.

123

.. LUZZI_ L. T ---- _

********************* disable calculations needin E unavailable signals.

c********** elevator and aileron calculations.

if (iDeR..q.O .or. iDeL.eq.O) then

call cantCalc(oDe)

call cantCalc(oDa)

endif

c********** keas calculation.

if (iQbar.eq.O) call cantCalc(oKeas)

r6turn

end

6

\

131

_d

B.1.2 Subroutine ActivateCF1--

subroutine activatsCF1

c Richard Maine. 12 Aug 86.

c Activate needed calculated functions and their inputs.

c Simple sample version for aileron, elevator and keas calculations.

implicit none

********************* common.

common /CFI/ useDe,useDa,useKeas,iDeR,iDeL,oDe,oDa,iQbar,oKeas

integer iD_R,iDeL,oDe,oDa,iObar,oKeas

logical useDe,useDa,useKeas

sa_e /CFI/

********************* externals.

external isUsed,setUsed

logical isUsed

c executable code

********************* de and da calculations.

useDe = isUsed(oDe)

useDa = isUsed(oDa)

if (useDe .or. useDa) then

call setUsed(iDeR)

call setUsed(iDeL)

endif

********************* keas calculation.

useKeas ffiisUsed(oKeas)

if (useKeas) call setUsed(iQbar)

i ,

I,

I

i

return

end

mr"

)

B.1.3 Subroutine DoOFI--

subroutine doCF1 (tiue,data,reset)

c Richard Maine. 12 Aug 86.

c Evaluate calculated functions for gotDa_a.

c Simple sample version for aileron, elevator and keas calculations.

implicit none

********************* interface.

c time(input): time of this frame.

c data(i/o): data vector for both input an4 output.

c reset(input): true on the first point of a time segment_

logical reset

double precision time,data(O:,)

********************* common.

common /CFI/ useDe,useDa,useKeas,iDeR,iDeL,oDe,oDa,iQbar,oKeas

integer iDeR,iDeL,oDe,oDa,iQbar,oKeas

logical useDe,useDa,useKeas

save /CF1/

********************* external.

intrinsic sqrt,max

********************* local.

double precision zero

parameter (zero=O.)

c........................... executable code

c***** de is the average of the left and right surfaces.

if (useDe) data(oDe) - .S*(data(iDeR)+data(iDeL))

c**_** da is (left-right)/2

if (useDa) data(oDa) ffi.5*(data(iDeL)-data(iDeR))

c***** Keas

if (useKeas) data(oKeas) 8 17.17*sqrt(max(data(iQbar),zero))

return

end

126

[_.2 Sample Filter Module

B.2.1 Subroutine AlJ'ccateFilt--

subroutine allocateFilt (inF,inSig,nIn,maxOut,nOut)

c Richard Maine. 12 Aug 86.

c Locate input and output signals for filter.

¢ Sample version based on x-29.

implici¢ none

integer input,output

parameter (Input=5,output=6)

********************* interface.

¢ inF(input): input file number.

c inSig(i/o): names of available input signals.

c Output names appended on return.

c nIn(input): number of available input signals.

c maxOut(input): maximum a11owed number of filtered signals.

c nOut(output): number of filtered signals.

integer inF,nlnomaxOut,nOut

character inSig(nln),(,)

********************* common.

integer maxInF.maxIch

parameter (maxInF-lO,maxIch=1000)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU
integer maxFF,maxFCh

parameter (maxFF=2°maxFChffiSO)

_teger iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

I fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF)
2 fiChU(maxFCh,maxFF)

save /filtCom/

********************* external.

external slndex

integer sIndex

intrinsic index,len

127

®

integer iFilt,i,iChan,iBlank

c nFF: number of files with filters.

c nFSigs: number of signals in each file with filters defined.

c fSigs: names of signals with filters defined.

integer nFF,nFSigs(maxFF)

character fSigs(maxFCh,maxFF).16

save nFF,nFSigs,fSigs

data nFF/2/

data nFSigs(1)1211,(fSigs(i,l),i=l,21)/

I 'alSlOlO','aa5200I','aaS2002',,aa52003,

2 'va62002','va62004','wa62005',,va6200B,

3 'da81004','daSlO11','da81012,,,da81013,

4 'da81015','da81016','da81018',,da81019,

data nFSigs(2)/6/,(fSigs(i,2),i=l,6)/

1 'a151012','daSlO30','a15100I,,,a151007,

,'da81001','da81002,,

,'da81014',

,'da81021','da81022,/

,'a151008','a151009'/

c executable code

nOut = 0

********************* Find filter number for this file.

c******************** Based on first filtered signal.

********************* Implementation allows only I filter per file.
do 500 iFilt = I , nFF

if (nFSigs(iFilt).gt.O) then

if (sIndex(fSigs(1,iFilt),inSig,nIn).ne.O) goto 900
endif

500 continue

iFilts(inF) = 0

goto 9999

900 iFilts(inF) m iFilt

********************* find channel numbers of filtered signals.
nFChs(iFilt) - 0

do 2000 i = I , nFSigs(iFilt)

iChan = sIndex(fSigs(i,iFilt),inSig,nIn)

if (iChan.eq.O) then

write (output,.) '*,* filter source signal ',

I fSigs(i,iFilt),' not found. Filter omitted.'

else

if (nOut.ge.maxOut) then

write (output,,) '**, too many filtered signals. ',

I 'List truncated'

goto 9999

12_

'...& #

endif

nOuz -nOut + I

nFChs(iFilZ) -nOut

fiCh(nOut,iFil_) - iChan

fCh(nOut,iFilt) - nIn ÷nOut

iBlank - index(inSig(iChan)," _)

if (iBlank.lt.2 .or. iBlank.gt.len(inSig(1))-2)

1 iBlank - len(InSig(1)) - 2

inSig(nIn÷nOut) - inSig(iChan)(l:iBlank-1) // '-f'

endif

2000 continue

9999 return

end

129

®

B.2.2 Subroutine Activ_teFiIt--

subroutine activateFilt (inF,iaOff)

c Richard Maine. % Sept 86.

c Activate needed filters and their inputs.

c Sample version based on x-29.

implicit none

********************* interface.

c inF(input): input file number.

c iaOff(input): offset of channel numbers into allDat vector.

inteEer inF,iaOff

********************* common.

integer maxInF,maxIch

parameter (maxInF=lO,maxIch=1000)

common IfiltComl iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU

integer maxFF,maxFCh

parameter (maxFF=2,maxFCh=50)

integer iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

1 fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),

2 fiChU(maxFCh,maxFF)

save /filtCom/

********************* external.

external isUsed,setUsed

logical isUsed

********************* local.

integer i,iFilt

logical useFilt

c........................... executable code

iFilt = iFilts(inF)

if (iFilt.ne.O) then

********************* activate used filters and mark active inputs.

do 1000 i - 1 , nFChs(iFilt)

useFilt = isUsed(iaOff÷fCh(i,iFilt))

if (useFilt) call setUsed(iaOff+fiCh(i,iFilt))

1000 continue

endif

return

end

130

B.2.3 Subroutine ReAfapFiit--

subroutine reMapFilt (inF,iuMap)

c Richard Maine. 2 Sept 86.

c Remap filters to compressed locations.

c Sample version based on 2-29.

implicit none

********************* interface.

c inF(input): input file number.

c iuMap(input): map from uncompressed to compressed locations.

integer inF,iuMap(*)

********************* common.

integer maxInF,maxIch

parameter (maxInF=10,maxIch=lO00)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU

integer maxFF,maxFCh

parameter (maxFFf2,maxFChffiSO)

integer iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

1 fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),
2 fiChU(maxFCh,maxFF)

save /filtCom/

********************* local.

inteEer i,iu,iFilt

c executable code

I000

iFilt = iFilts(inF)

if (iFilt.ne.O) then

iu = 0

do I000 i = I , nFChs(iFilt)

if (iuMap(fCh(i,iFilt)).ne.O) then

iu : iu + I

fChU(iu,iFilt) ffiiuMap(fCh(i,iFilt))

fiChU(iu,iFilt) = iuMap(fiCh(i,iFilt))
endif

continue

nFChsU(iFilt) ffiiu

endif

return

end

131

.)

B.2.4 Subroutine DoFilt--

subroutine doFilt (inF,time,data,rese_)

c Richard Maine. 12 Aug 86.

c calculate filtered data for an input record.

c Sample version based on x-29.

implicit none

********************* interface.

c inF(input): input file number.

c time(input): time of the record.

c data (i/o): data vector for both input and output.

c reset(input): forces the filter to be (re)initialized.

integer inF

loEical reset

double precision time,data(.)

********************* common.

integer maxInF,maxIch

parameter (maxInF=10,aaxIch=1000)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU

integer maxFF,maxFCh

parameter (maxFF=2,maxFCh=50)

integer iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

I fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),

2 fiChU(maxFCh,maxFF)

save /filtCom/

********************* external.

external low3F,notchF

********************* local.

integer i,iFilt

,,

(

executable code

i000

iFilt - iFilts(inF)

if (iFilt.ne.O) then

do 1000 i = I , nFChsU(iFilt)

data(fChU(i,iFilt)) - data(fiChU(i,iFilt))

continue

call low3F(iFilt,time,data,rese_)

call notchF(iFilt,time,data,reset)

endif

return

end

B.2.5 Subroutine Low3F--

subroutine low3F (iFilt,aTime,data,reseZ)

c Richard Maine. 12 Aug 86.

c 3rd order low-pass filter. (Really a concatenated Ist and 2nd order).

c uO,zO are current in,out; ul,zl previous time; z2 two previous.

c yO,yl,y2 are currenE, previous, and two previous intermediate state.
c Sample version based on x-29.

implicit none

********************* interface.

c iFilt(input): filter number.

c aTime(input): actual frame time.

c data (i/o): data vector for both input and output.

c reset(input): should filter be (re)initialized.

integer iFilz

logical reset

double precision aTime,data(,)

********************* common.

integer maxInF,maxIch

parameter (maxInFffilO,maxIch-1000)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU

integer maxFF,maxFCh

parameter (maxFFffi2,maxFChffi50)

integer iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

1 fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),

2 fiChU(maxFCh,maxFF)

save /filtCom/

********************* externals.

intrinsic exp,cos

********************* local.

c set appropriate break frequency.

double precision freq

parameter (freq=15.)

integer iChan,i

double precision wDt,dt(maxFF),

134

1 eat(maxFF),eabt,cl(maxFF),c2(maxFF),g1(maxFF),

2 g2(maxFF),u0i,yOi,z0i,

3 u1(maxFCh,maxFF),y1(maxFCh,maxFF),y2(maxFCh,maxFF),

4 zl(maxFCh,maxFF),z2(maxFCh,maxFF)

save dt,eat,gl,cl,c2,g2,ul,yl,y2,zl,z2

data dtl.O05,.01/

c executable code

********************* initialize filter at maneuver start.
if (reset) then

c********** compute filter coefficients.

wDt = freq*dt(iFilt)*2.*3.14159265

eat(iFilt) = exp(-wDt)

gl(iFilt) = .5*(l.-eat(iFilt))

eabt = exp(-.866025404.wDt)

c1(iFilt) = -2.*eab_*cos(.5,wDt)

c2(iFilt) ffieabt**2

g2(iFilt) = .25*(1.+cl(iFilt)+c2(iFilt))

c********** initialize filter states.

do 2000 i = 1 , nFChsU(iFilt)

uOi = data(fChU(i,iFilt))

ul(i,iFilt) - u0i

y2(i,iFilt) = u0i

y1(i,iFilt) = u0i

z2(i,iFilt) = u0i

z1(f,iFilt) = u0i

2000 continue

********************* filter.

else

do 4000 i = 1 , nFChsU(iFilt)

iChan = fChU(i,iFilt)

uOi = data(iChan)

yOi = eat(iFilt)*yl(i,iFilt) ÷ gl(iFilt)*(uOi+u1(i,iFilt))

zOi = -c1(iFilt)*zl(i,iFilt) - c2(iFilt)*z2(i,iFilt)

1 + g2(iFilt)*(yOi+2.*yl(i,iFilt)+y2(i,iFilt))

135

ul(i,iFilt) = uOi

y2(i,iFilt) = yl(i,IFilt)

yl(i,iFilt) = yOi

z2(i,iFilt) = zl(i,iFilt)

zl(i.iFilt) = zOi

data(iChan) = zOi

4000 continue

endif

9999 return

end

B.2.6 Subroutine NotchF--

subroutine no_chF (iFilt,aTime,data,reset)

c Richard Maine. 12 Aug 86.

c notch filter.

c uO,zO are current in,out; ul,zl previous time; u2,z2 two previous.

c Sample version based on x-29.

implicit none

********************* interface.

c iFilt(input): filter number.

c aTime(input): actual frame time.

c data (i/o): data vector for both input and output.

c reset(input): should filter be (re)initialized.

integer iFilt

logical reset

double precision aTime,data(*)

********************* common.

integer maxInF,maxIch

parameter (maxInFflO,maxIchffilO00)

common /filtCom/ lFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU

integer maxFF,maxFCh

parameter (maxFF-2,maxFChffi50)

integer iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

1 fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),

2 fiChU(maxFCh,maxFF)

save /filtCom/

********************* externals.

intrinsic exp,cos

********************* local.

c..... set appropriate break frequency.

double precision freqRad

parameter (freqRadffi68.)

integer iChan,i

double precision wDt,wlDt,dt(maxFF),

I b1(maxFF),c1(maxFF),c2(maxFF),g(maxFF),uOi,zOi,

2 u1(maxFCh,maxFF),u2(maxFCh,maxFF),

3 z1(maxFCh,maxFF),z2(maxFCh,maxFF)

save dt,bl,cl,c2,g,ul,u2,zl,z2

data dt/.O05,.01/

137

executable code

********************* initialize filter at maneuver start.

if (reset) then

c********** compute filter coefficients.

wDt = freqRad*dt(IFilt)

bl(iFilt) - -2.*cos(wDt)

wIDt = wDt*.707106781

c1(iFilt) - -2.*exp(-wlDt)*cos(wlDt)

c2(iFilt) = exp(-2.*wlDt)

g(iFilt) = (l.+cl(iFilt)+c2(iFilt))/(2.+bl(iFilt))

c******_*, initialize filter states.

do 2000 i = 1 , nFChsU(iFilt)

uOi = data(fChU(i,iFilt))

u2(i,iFilt) = uOi

ul(i,iFilt) = uOi

z2(i,iFilt) = uOi

zl(i,iFilt) = uOi

2000 continue

C_$_#_

4000

9999

else

****** filter.

do 4000 i = I , nFChsU(iFilt)

iChan = fChU(i,iFilt)

uOi = data(iChan)

zOi = -cl(iFilt)*zl(i,iFilt) - c2(iFilt)*z2(i,iFilt)

+ g(iFilt).(uOi + bl(iFilt)*ul(i,iFilt) + u2(i,iFilt))

u2(i,iFilt)

ul(i,iFilt)

z2(i,iFilt)

zi(i,iFilt)

data(iChan)

continue

endif

return

end

= ul(i,iFilt)

= uOi

= zl(i,iFilt)

= zOi

= zOi

138

References

1. EMBOS User's Guide, Volume 1, ELXSI, San Jose, California, 1983.

"2. American National Standard Programming Language FORTRAN, ANSI X3.9-1978, Americall Na-
tional Standards Institute, New York, 1978.

139

Index to User's and Programmer's

abbreviations 4

antonym 4

argument

key word -1

positional 4

switch 4

blanks.t, 15. 16

calculated signals 1, 12, 14-17, 21, 22

case-1. 15, 27, 28

combizdn_ data 9

,'l _Ill II1 alld

cop!l 6, 7, 9, 10. 20

drJ 1N

h¢Ip .1, 2(.1

li._t ! 7

m_tI.M 9. 13, 16, 22

quit 7, 18

r_ml 6. 9. 12 14

,_hott, 17

,_tgmd,_ 6. 9. 10, 1.1, 2l

.,k_ u' 12

_crit, li. 10. 11. 19

c(,nm:md fib, IN

_iqlllll('ll!- _. IN

,,,lhTiIlu_ri_,_ lino 3, 9, 1,_

,I,']ilnit,x, :_

,IT'()It(HIT _, _,

,It S,',, pararnptor, d¢

!i!_,,_ 12.2:!

f,,rmat 1, 19, 23. 27). 30

flare,,tiIit,,7, 9, If 13. 16

iltl,,r:_liv,,nl,.lo2_,I_

1 I0

I d

Guides

interpolation 1, 8, 9, 13, 16, 22, 23

limitations 2, 3, 8, 9, 12, 15, 16, 21, 23

merging 1, 9

multiple files 9, 10

parameter

dt 7

fSkew 12

n Times 8

thin 7-9, 13

records 7

sample interval 7

sample rate 1. 7.22

signal name 15

duplicate 9

renaming 9, 16

signal order 10

skew 1, 8, 11, 13, 16, 22, 23

splicing 9, 12

synonyms ,I

syntax ;3

argument -1

comman(t 3

parameter 1

system (let)en(ton(.e 2 5. 7. 1,_ 23. 25. 27

thinning Seo t)aranwter, thin

time accuracy ,_, 11, 13

t imo sogment 1, 6

time skew I1

timo tags 7

I ilIIO tol,,ran('e

tolerance 8

[;NIX 32

VAX 31

\'3IS 31

1.|I

It

NASA TM-88288

4, Title _ Subtitle

Manual for GetData Version 3.1--A FORTRAN

Utility Pro[ram for Time History Data
7 AuthortsJ

Richard E. l_aine

9 I_¢focm_ng Orofllnilatio_ Nalme and AdCk'ma

NASA Ames Research Center

Dryden Flight Research Facility
F.O. Box 273, Edwards, CA 93523-5000

12 SDon$otlng Agency _me ind Add¢lms

National Aeronautics and Space Administration
Washington, DC 20546

"_o DOle"_e_ t ar, ?_ot_

3. R_iOamtt Cata_l No.

S. Racort Oate

October 1987
6. IhlrfOcmit_ Organization CoOe

8. I_ormi¢_ Orpni_tio#l Rq_m't No.

H-1403

10. Woek Unit No.

RTOP 505-61

'11: Contract or Grlnt No.

13. Tv0e of Regon and Peeio(I Cover_l

Technical Memorandum

14. S_m_'_so¢it_j A0encv Co(_

Contact author for information on program availability.

_'3 40S_r3C_

This report document,, . ersion 3.1 of the GetData computer program. GetData is _ utility

program for nlanipulating files of time history data, that is, data giving the values of parameters

functions of time. The most fundamental capability of GetData is extracting selected signals
amt time segrnents from an input file and writing the selected data to an output file. Other

capabilities include converting file formats, merging data from several input files, time skewing.
interpolating to common output times, and generating calculated output signals as functions of
ttw input signals

This report also documents the interface standards for the subroutines used by GetData to
read and write the time history files. All interface to the data files is through these subroutines.

k_wping the main body of GetData independent of the precise details of the file formats. Different

file f,,rmats can be supported by changes restricted to these subroutines. Other cornputer
programs ,'onforming to the interface standards can call the same subroutines to read and write
fib's in compatible formats.

(',)H|i_l]t,'r prograll:

I)at :t l,r,,c.'.sing

['i_l," hJst,,ry (t:oa

18 O,str,bwt,on St41_ernent

Unclassified (;nlimited

21 No of P,lqe_

l ".cl;_iti,'d [ITnc la"_i fled "! 1,15
i

Subj,'ct categor._ _;1

22 _',ce"

A(I7

*Fo,, ...le by the National Technical Information S, trice. Springfield. Virginia 22161.

